
CMPSCI 250: Introduction to Computation

Lecture 20: Deterministic and Nondeterministic Finite Automata
David Mix Barrington
16 April 2013



Deterministic and Nondeterministic Finite Automata

• Deterministic Finite Automata

• Formal Definition of DFA’s

• Examples of DFA’s

• Characterizing the Strings For Each State

• Nondeterministic Finite Automata

• Interpretations of Nondeterminism

• The Model of λ-NFA’s



Deterministic Finite Automata

• We now turn to finite-state machines, a model of computation that captures 
the idea of reading a file of text with a fixed limit on the memory we can use 
to remember what we have seen.  

• In particular, the memory used must be constant, independent of the length 
of the file.  (We called this “O(1)” in CMPSCI 187.)  We ensure this by requiring 
our machine to have a finite state set, so that at any time during the 
computation all that it knows is which state it is in.

• The initial state is fixed.  When the machine sees a new letter, it changes to a 
new state based on a fixed transition function.  When it finishes the string, it 
gives a yes or no answer based on whether it is in a final state.

• Because the new state depends only on the old state and the letter seen, the 
computation is deterministic and the machine is called a deterministic finite 
automaton or DFA. 



Where We Are Going

• A DFA decides a language -- it says yes or no after reading any string over its 
alphabet, and its language is the set of strings for which it says yes.

• The Myhill-Nerode Theorem will give us a way to take an arbitrary language 
and determine whether there is a DFA that decides it.  We’ll define a particular 
equivalence relation on strings, based only on the language.  If this relation 
has a finite set of equivalence classes, there is a DFA for the language, and 
there is a minimal DFA with as many states as there are classes.  We’ll see 
how to compute the minimal DFA from any DFA for the language.

• As we’ve mentioned, there is a DFA for a language if and only if the language 
is regular (is the language denoted by some regular expression).  We’ll prove 
this important result, called Kleene’s Theorem, over several lectures.  Our 
proofs will show us how to convert a DFA to a regular expression and vice 
versa.



Formal Definition of DFA’s

• Formally a DFA is defined by its state set S, its initial state i ∈ S, its final 
state set F ⊆ S, its input alphabet Σ, and its transition function δ from (S × 
Σ) to S.  

• We usually represent DFA’s by diagrams (labeled directed multigraphs) with a 
node for each state, a special mark for the initial state, a double circle on 
each final state, and an arrow labeled “a” from node p to node q whenever 
δ(p, a) = q.

• The behavior function of a particular DFA is a function called δ* from (S × Σ*) 
to S, such that δ(p, w) is the state of the DFA after it starts in state p and 
reads the string w.  Formally, we say that δ(p, λ) = p and that δ*(p, wa) = 
δ(δ*(p, w), a).  

• The language of a DFA is defined to be the set of strings w such that δ*(i, w) 
is a final state.  For a DFA M, we call this language L(M).



An Example of a DFA

• This DFA has four states, 1, 2, 3, and 4.  Its 
input alphabet is {0, 1}.  Its start state is 1, and 
its final state set is {1, 2, 3}.

• Examples of strings in the language of this DFA 
are λ (because 1 is final), 0 (because 2 is final), 
and 00100 (because 3 is final).

• Any string with three 0’s in a row is not in the 
language of this DFA, because 000 takes you 
from anywhere to the nonfinal “death state” 4.

• In fact the only way to get to 4 is by three 0’s in 
a row, so the language of this DFA is the 
complement of the regular language Σ*000Σ*.



iClicker Question #1: DFA Diagrams

• Which statement about the pictured DFA is false?

• (a) The alphabet of the DFA is {a, b}.

• (b) The start state is not a final state.

• (c) The string bbaa is in the language of the DFA.

• (d) The string aaabb is not in the language of the DFA.



Examples of DFA’s

• One of the simplest possible DFA’s decides the language of binary strings with 
an odd number of ones.  It has two states E and O, representing whether the 
machine has seen an even or odd number of ones so far.  The initial state is E, 
and the final state set is {O}.  The transition function has δ(E, 0) = E, δ(E, 1) = 
O, δ(O, 0) = O, and δ(O, 1) = E.

• We can build a four-state DFA for the language EE from Discussion #11 
tomorrow.  Its states are EE, EO, OE, and OO, where for example δ*(EE, w) = 
EO if w has an even number of a’s and an odd number of b’s.  The initial state 
is EE and the final state set is {EE}.  An a changes the first letter of the state, a 
b the second.

• Another four-state DFA can decide whether the next to last letter of a binary 
string w exists and is 1.  The state set is {00, 01, 10, 11} and the state after 
reading w represents the last two letters seen.  The initial state is 00 and the 
final state set is {10, 11}.



iClicker Question #2: Language of a DFA

• What is the language of the pictured DFA?

• (a) all strings with an even number of 1’s

• (b) all strings of even length

• (c) all strings with an odd number of 0’s

• (d) all strings with an even number of 0’s



DFA’s in Pseudo-Java

• We consider the input to be given like a file, with a method to give the next 
letter and one to tell when the input is done.  We relabel the state set and the 
alphabet to be {0,..., states - 1} and {0,..., letters - 1} 
respectively.

public class DFA {
   natural states; natural letters; natural start;
   boolean [ ] isFinal = new boolean[states];
   natural [ ] [ ] delta = new natural [states] [letters];
   natural getNext( ) {code omitted}
   boolean inputDone( ) {code omitted}
 
   boolean decide ( )
   {// returns whether input string is in language of DFA
      natural current = start;
      while (!inputDone( )) 
         current = delta [current] [getNext( )];
      return isFinal [current];}}



Characterizing Strings With Given Behavior

• How do we prove that a particular DFA has a particular language?

• With the even-odd DFA, we can say that δ*(E, w) = E if w has an even number 
of ones, and δ*(E, w) = O if it has an odd number of ones.  

• Letting P(w) be the entire statement in the bullet above, we can prove ∀w:P(w) 
by induction on all binary strings.  P(λ) says that δ*(E, λ) = E, because λ has 
no ones and 0 is even, and δ*(E, λ) = E is true by definition of δ*.  Now 
assume that P(w) is true, so that δ*(E, w) is E if w has an even number of ones 
and O otherwise.  Then w0 has the same number of ones as w, so δ*(E, w0) 
should be the same state as δ*(E, w).  And w1 has one more one than w, so 
δ*(E, w1) should be the other state from δ*(E, w).  In each of the four cases, 
the new state is the one given by the δ function of the DFA.



Another Characterization Example

• The language No-aba is the set of strings that never have an aba substring.  
We can build a DFA M for No-aba with state set {1, 2, 3, 4}, start state 1, final 
state set {1, 2, 3}, and transition function δ(1, a) = 2, δ(1, b) = 1, δ(2, a) = 2, 
δ(2, b) = 3, δ(3, a) = 4, δ(3, b) = 1, and δ(4, a) = δ(4, b) = 4.  (We call 4 a death 
state.)  We can see that an aba will take us from any state to 4.

• Let L1 be the set of strings that have no aba and don’t end in a or ab.  Let L2 
be the set of strings that don’t have an aba and end in a.  L3 is the set of 
strings that don’t have an aba and end in ab, and L4 is the set that have aba.

• We can make eight checks, one for each value of δ.  If δ(i, x) = j, we check 
that any string in Li, followed by the letter x, yields a string in Lj.  Then we can 
do an inductive proof, where our statement P(w) is the entire statement in the 
bullet above: “For all states i, δ*(1, w) = i if and only if w ∈ Li” where each Li is 
as defined.  This proves that w is in L(M) if and only if w is in No-aba.



Nondeterministic Finite Automata

• DFA’s are deterministic in that the same input always leads to the same 
output.  Some algorithms are not deterministic because they are randomized, 
but here we will consider “algorithms” that are not deterministic because they 
are underdefined -- given a single input, more than one output is possible.

• We had an example of such an algorithm with our generic search, which 
didn’t say which element came off the open list when we needed a new one.

• Formally, a nondeterministic finite automaton or NFA has an alphabet, 
state set, start state, and final state just like a DFA.  But instead of the 
transition function δ, it has a transition relation ∆ ⊆ Q × Σ × Q.  If (p, a, q) ∈ 
∆, the NFA may move to state q if it sees the letter a while in state p.  We 
draw an NFA like a DFA, with an a-arrow from p to q whenever (p, a, q) ∈ ∆.  
The NFA no longer has the rule that there must be exactly one arrow for each 
letter out of each state -- there may be more than one, or none.



The Language of an NFA

• We can no longer say what the NFA will do when reading a string, only what it 
might do.  The language of an NFA N is defined to be the set {w: w might be 
accepted by N}.  More formally, we define a relation ∆* ⊆ Q × Σ* × Q so that 
the triple (p, w, q) is in ∆* if and only if N might go from p to q while reading w. 
Then w ∈ L(N) ↔ (i, w, f) ∈ ∆* for some final state f ∈ F.

• Consider the NFA N with state set {i, p, q}, start state i, final state set {i}, 
alphabet {a, b, c}, and ∆ = {(i, a, i), (i, a, p), (p, b, i), (i, b, q), (q, c, i)}.  This is 
nondeterministic because there are two a-moves out of i, and several 
situations with no move at all.  Here L(N) is the regular language (a + ab+ bc)*, 
because any path from i to itself must consist of pieces labeled a, ab, or bc.

• It is not immediately clear how, for a larger NFA, we could determine whether 
a particular string was in L(N).  Our method will be to turn N into a DFA.



iClicker Question #3: The Language of an NFA

• What is the language of this NFA?

• (a) Exactly those strings ending in “abb”.

• (b) The set {abb}.

• (c) Exactly those strings containing “abb” 
as a substring.

• (d) The language is empty.



Interpretations of Nondeterminism

• Because we can’t speak clearly of “what happens when we run N on w”, we 
need other ways to think of the action of an NFA.

• In our proofs, we will just replace “w ∈ L(N)” by “∃f: (i, w, f) ∈ ∆*” and argue 
about the possible w-paths in the graph of N.

• We can think of N as being randomized, so that whenever it has a choice of 
moves it selects one of them uniformly at random.  (This essentially makes N 
a Markov process, as studied in CMPSCI 240.)  Then we could speak of the 
probability that N accepts w, and w ∈ L(N) if and only if this probability is 
greater than 0.

• We can think of the action of N on w as a one-player game where White, 
who want N to accept w, chooses each move from the set of legal options.  
Then White has a winning strategy for this game if and only if w ∈ L(N).



iClicker Question #4: A Randomized NFA

• Consider running the pictured NFA randomly on 
the string “101”.  When there is one arrow 
available we take it, when there are two we flip a 
coin, and when there are none we die.  What is 
the probability that we will accept this string?

• (a) 0

• (b) 1/4

• (c) 1/2

• (d) 3/4



The Model of λ-NFA’s

• The main reason to use NFA’s is that they are easier to design in many 
situations when we have some other definition of the language.  Often we will 
find it convenient to give the NFA the option to jump from one state to 
another without reading a letter.  

• A λ-move is a transition (p, λ, q)  that allows a λ-NFA to do just that.  We 
need to redefine the type of ∆, so that it is a subset of Q × (Σ ∪ {λ}) × Q.  In the 
diagram, this transition is represented by an arrow from p to q labeled with λ.

• Formally ∆* is now more complicated to define.  We say that (p, λ, q) ∈ ∆*  if 
there is a path of λ-moves from p to q.  Then we define ∆*(p, wa, q) to be true 
if and only if there exist states r, s, and t such that (p, w, r), (r, λ, s) and (t, λ, q) 
are all in ∆*, and (s, a, t) is in ∆.  What this means is that ∆*(p, w, q) is true if 
and only if there exists a path from p to q such that the letters on the path, 
read in order, spell out w.  There may be any number of λ-moves in the path 
as well.  (Thus we don’t even know how long the path from p to q might be.)


