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Examples of Tree Structures

• In Lecture #14 we discussed a number of tree structures used in computer 
science: rooted trees, binary trees, and expression trees.  Each class of 
objects had a recursive definition, and we could prove facts about them by 
induction.

• Rooted trees model hierarchies of various kinds, with a root at the top and a 
single parent for every element except the root.  A leaf is a node that has no 
children, and a non-leaf is also called an internal node.  The hierarchies model 
file systems, the object hierarchy in Java, and the reporting trees of 
organization -- as long as in each case an element cannot have more than 
one parent.  If no parent can have more than two children, the tree is binary.

• Expression trees had leaves labeled by elements and internal nodes labeled 
by operators.  The value of an expression tree is defined inductively.



Simple Graphs With No Cycles

• Rosen defines a circuit to be a non-trivial path from a vertex to itself.  A 
simple circuit is one that does not reuse an edge.  He also defines the cycle 
graph Cn (for n ≥ 3) to be the simple graph with n vertices and n edges, with a 
circuit containing all the edges.

• If a simple graph contains a simple circuit, it may still reuse vertices.  But if 
any simple circuit exists, there also exists a simple circuit that does not.  
Since the edges of this circuit form a subgraph that is isomorphic to some Cn, 
we will call such a circuit a cycle as well.

• If a simple graph has no simple circuit, we call it a forest.  The connected 
components of a forest are called trees, and a single graph is a tree if it is 
both connected and has no cycle (no simple circuit).

• Note that we have many definitions of “tree” -- these are graph-theoretic.



Unique Simple Paths

• Here is a fundamental property of a graph-theoretic tree.  If u and v are any 
two vertices in a tree T, there is a unique simple path in T from u to v.  

• In fact, if G is any simple graph, G is a tree if and only if for every u and v, 
there is a unique simple path from u to v.  Let’s prove this.

• By definition, G is connected if and only for any u and v, there is at least one 
path from u to v.  So we must show that if G is connected, there is a cycle in 
G if and only there exist u and v with more than one simple path from u to v.

• If C is a cycle in G, let u and v any two distinct vertices on C.  We have two 
paths along C from u to v, one in each direction.

• The converse is a bit more complicated.



Finishing the Unique Simple Paths Proof

• We assume that G is a simple graph, that u and v are vertices, and that there 
are at least two different simple paths from u to v.  We want to prove that 
there exists a cycle in G.

• The first idea would be to take the circuit that goes from u along the first path 
to v, then back along the second path to u.  But this may not be a simple 
cycle, as the two paths could share edges and even vertices.

• Rosen proves in the solution to Exercise 10.4.59 that in this case we have a 
cycle.  Start at u and follow the paths together as long as they share edges.  
Let s be the first node at which they split.  (If s = v, whichever path is not 
finished is a simple circuit from v to v.)  Now follow the first path until it hits 
the second path again (which might or might not be at v).  Then follow the 
other path back to s.  This is a simple circuit, and if a simple circuit exists 
then a cycle must exist.



Rooted Tree Classes

• What’s the connection between graph-theoretic trees and the rooted trees 
from Lecture #14?  

• Let T be a graph-theoretic tree and let r be any vertex in T. If we declare r to 
be the root of T, we can redraw T with r at the top (at level 0), r’s neighbors at 
level 1, r’s neighbors’ neighbors at level 2, and so forth.  Every other vertex v 
has a unique simple path to r, and the length of this path tells us what level v 
is at.

• This is a proper rooted tree because every node x (except r) has a parent in 
the tree.  This is the only one of its neighbors that is closer to r, and is the 
next node on the unique simple path from x to r.

• A single graph-theoretic tree gives a different rooted tree for each root.



iClicker Question #1: Rooted Trees

• Are these two trees isomorphic (as simple graphs) 
to one another?

• (a) No, because the bottom one has a root and the 
top one does not.

• (b) No, because the top one has a node of degree 
four and the bottom one does not.

• (c) Yes, because each one has six nodes and five 
edges.

• (d) Yes, because if you make 4 the root of the top one 
and redraw it you can get a copy of the bottom one.



Rooted Tree Vocabulary

• Remember that the degree of a node in a rooted tree is the number of its 
children (not its degree as a member of the simple graph).

• A rooted tree is k-ary if no node has degree more than k, and binary if no 
node has degree more than 2.  It is full k-ary if every internal node has 
degree exactly k, and balanced if every leaf is at the same level.

• Sometimes we care about the order of the children of an internal node, and 
sometimes we don’t.  Often in a binary tree we distinguish the left and the 
right children of a node.

• For each tree class, an isomorphism between two trees is a bijection of the 
vertices that preserves the important structure, like the parent-child 
relationship and, if order of children matters, the order of children.



Recursion and Induction on Trees

• As we saw in Lecture #14, we have recursive definitions for rooted trees, k-
ary trees, and full k-ary trees, with or without order on the children of a node.

• Each recursive definition gives us a Law of Induction for the class.  For 
example, we defined a rooted tree to be either a single node or a root node 
with one or more children, each of which is the root of a distinct rooted tree.

• If P(T) is a property of rooted trees, we can prove ∀T:P(T) by induction.  The 
base case is to prove P(R) for all single-node trees R.

• For the inductive case, we assume that T is a tree whose root has children 
that are the roots of T1,..., Tk, and that P(Ti) holds for all i from 1 to k.  We then 
need to prove P(T) from these assumptions.



Numerical Properties of Trees

• A bit of observation of trees should convince you that the number of edges in 
any tree is always exactly one less than the number of vertices.  How can we 
prove this?  Let’s prove it by induction on rooted trees, since any graph-
theoretic tree can be made into a rooted tree by choosing a root.

• The base case is for a one-node tree, which by definition has one vertex and 
no edges.  So our equation e = v - 1 holds for the base case.

• The general case has T consisting of a root r with edges to the roots of k 
subtrees T1,..., Tk.  If each subtree Ti has ei edges and vi vertices, the IH tells 
us that ∀i:ei = vi - 1.  Let’s count the total edges and vertices of T.  We have 
one root plus all the vertices in all the subtrees, for 1 + ∑(vi) vertices.  We have 
k edges from the root and all the edges in all the subtrees, for k + ∑(ei) edges. 
Applying the IH, we have e = k + ∑(vi - 1) = k + (∑(vi)) - k = ∑(vi) = v - 1.  We 
have shown e = v - 1 for T and completed the induction.



Counting Nodes and Edges in Balanced k-ary Trees

• Balanced k-ary trees have a different recursive definition.  The full balanced k-
ary tree of height 0 is a single vertex.  The FBkT of height i+1 consists of a root 
with k children, each of which is the root of an FBkT of height i.  So an 
induction over FBkT’s is really just an ordinary induction on the height.

• How many vertices and edges does an FBkT of height n have?  Let’s call these 
two functions V(n) and E(n).  For the base case, we have one vertex and no 
edges, so V(0) = 1 and E(0) = 0.  For the inductive case, our definition gives us 
the equations V(n+1) = 1 + kV(n) and E(n+1) = k + kE(n).

• For binary trees (k = 2) we can use these equations to prove V(n) = 2n+1 - 1 and 
E(n) = 2n+1 - 2.  In general we get V(n) = (kn+1 - 1)/(k - 1) and again E(n) = V(n) - 1.

• It’s easier to count leaves, and we get just L(0) = 1, L(n+1) = kL(n), and L(n) = kn.  



iClicker Question #2: Full k-ary Trees

• A full k-ary tree is either a single node or a root with edges to exactly k roots 
of distinct full k-ary trees.  Rosen proves that a full k-ary tree with n total 
vertices and i internal nodes must satisfy the equation n = ki + 1.  If we prove 
this by induction, what is our inductive step?

• (a) For a one-node tree, n = 1 and i = 0 so n = ki + 1 is true.

• (b) Every child tree Tj satisfies nj = kij + 1.

• (c) Given that each child tree Tj satisfies nj = kij + 1, n = ki + 1.

• (d) Assume that m = ki + 1 for all m such that m < n. 



Applications of Trees

• Let’s conclude by looking at some of the uses of trees in computer science, 
some of them familiar from CMPSCI 187 and some not.

• In 187 we looked at binary search trees, where each node of the tree stores 
an object from some ordered class.  If x is the object at an internal node v, 
every object in x’s left subtree is ≤ x and every object in the right subtree is ≥ 
x.  We can find any object in the tree by using the internal node values to 
guide us from the root to where it either is or isn’t.

• We also saw heaps, where the element at a node must be ≥ the elements at 
each of its children.  These let us implement priority queues using O(log n) 
adjustments to add a new element or remove the largest element.

• In each case, we use the tree structure to get short paths to every element.



Lower Bounds From Decision Trees

• In a decision tree, each node represents a position during the execution of 
an algorithm.  Each internal node is labeled with a question, and there is a 
child for each answer to the question.  A leaf represents a position where the 
algorithm has come to a conclusion.

• If x is the number of possible answers to the question, the decision tree must 
have at least x leaves.  If the degree of the tree is k and its depth is d, this 
gives us the inequality kd ≥ x which translates to d ≥ logkx.

• In a comparison-based sorting algorithm, k = 2 because when we compare 
two elements there are two possible answers.  Since there are n! possible 
orders for n elements, the number of comparisons used in the worst case 
must be at least log2(n!) which can be shown to be at least O(n log n).  We call 
this a lower bound on the performance of any such sorting algorithm.



iClicker Question #3: Decision Trees

• You have n coins, all weighing the same except for one which is slightly 
heavier.  You have a balance scale that will tell you whether one group of 
coins is heavier, the same weight, or lighter than another group.  Which of 
these four statements is false?

• (a) If n > 3k, you cannot do it with k weighings.

• (b) If n = 3k, you can do it with k weighings.

• (c) If n = 2k, you can do it with k weighings.

• (d) If n > 2k, you cannot do it with k weighings.



Prefix Codes and Huffman Coding

• The ASCII and Unicode alphabets each represent letters by bit strings, and 
use strings of the same length for each letter.  This makes it easy to take a 
stream of bits and group them into the string for each letter.  

• A variable-length code can be more efficient than these fixed-length codes, 
if more common letters are represented by shorter strings.  But if the codes 
for letters are different lengths, we need a way to break up a string correctly.

• A set of strings is called a prefix code if no string is a proper prefix of 
another.  We can arrange the strings of a binary prefix code as the leaves of a 
binary tree, with an internal node for each proper prefix of a code word.  
When we read the stream of code bits, we travel down the tree until we hit a 
leaf, at which time we know we have a code word and return to the root.

• Huffman’s algorithm (presented in Rosen) is a way to get the tree for the 
most efficient code for a given alphabet, given the probability of each letter.



iClicker Question #4: A Prefix Code

• The tree at right represents a prefix code for 
converting strings over {A,B,C,D,E} into binary 
strings and vice versa.  In this code, what is the 
translation of the string “BEAD”?

• (a) 10011111110

• (b) 1101111001110

• (c) 11100111110

• (d) 10111101110



Game Trees

• We’ve seen a number of two-player games in the course so far.  We can 
model each game by a game tree, where a node represents a position and is 
labeled by which player is next to move.  The root is the start position and a 
leaf represents a position where the game is over.  Leaves are also labeled by 
the final score of the game (if you like, how much Black must pay to White).

• We’ve used the idea that in any deterministic game of perfect information, 
each player has an optimal strategy and the game has a value that each 
player can either achieve or exceed against any opposing strategy.

• We prove this result by induction on game trees.  The base case is a one-
node tree, where no one has a move and the value is fixed.  For the inductive 
case, one player has a choice of moves, and by the IH each move has a 
value.  So the optimal move is to choose the value best for the moving player, 
and the value of the new game is the best of those values for that player.


