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Review: Representations and Isomorphism

• Last time we defined a graph to be an object with vertices connected by 
edges, either undirected or directed.  A simple graph is undirected and 
cannot have parallel edges or loops.  Several other types of graphs relaxed 
these restrictions.

• We can represent an n-node graph as an adjacency matrix, an n by n matrix 
with rows and columns indexed by the vertices, where the (u,v) entry is 1 if 
there is an edge from u to v and is 0 otherwise.  We also discussed the 
adjacency list and the incidence matrix.

• Two graphs G and H are isomorphic if there is a function (called an 
isomporphism) from the vertices of G to the vertices of H such that (1) f is a 
one-to-one, onto function and (2) there is an edge from u to v in G if and only 
if there is an edge from f(u) to f(v) in H.



iClicker Question 1: Graph Isomorphism

• Look at the ten graphs below.  One of the following four statements is false -- 
which one?

• (a) Each of these graphs is isomorphic to at least one of the others.

• (b) Graphs M, S, V, and Z are all isomorphic to one another.

• (c) Graphs F, K and T are  all isomorphic to one another.

• (d) Graphs A and R are the only ones that are not bipartite.



Directed and Undirected Paths

• A path, in either an undirected or a directed graph, is a sequence of edges 
where the destination of each edge is the source of the next edge.  For 
example, a sequence of edges (u0, u1), (u1, u2),..., (uk-1,uk) forms a path of k 
edges from vertex u0 to vertex uk.  If {u, v} is an edge of an undirected graph, 
the path may use either (u, v) or (v, u).

• A path from a vertex to itself is called a circuit.  Circuits include the trivial 
path from any vertex to itself, with no edges at all.

• A path is called simple (by Rosen, at least) if it never contains the same edge 
more than once.  Others, including today’s version of Wikipedia, use this word 
for paths that never revisit the same vertex.

• The length of a path is the number of edges in it, not the number of vertices.



Examples of Paths and Distance

• The distance from vertex u to vertex v is the length of the shortest path from 
u to v, if there is such a path.  Otherwise the distance is undefined.

• We can model a game such as Rubik’s Cube as a graph with a vertex for 
each position and an edge for each legal move.  A position is solvable if there 
exists a path from it to the goal position, and the distance to the goal position 
(if it is defined) is the smallest number of moves to solve the puzzle.

• A collaboration graph has vertices for people and an edge between any two 
people who have collaborated.  An actor’s Bacon number is their distance to 
Kevin Bacon in a collaboration graph where “collaboration” means “have 
been in the same film”.  A mathematician’s Erdos number is their distance to 
Paul Erdos where collaboration means “have co-authored a paper”.  (Mine is 
3.)  A few people, such as actor Natalie Portman, have both a defined Erdos 
number and a defined Bacon number -- see the Wikipedia article on “Erdos-
Bacon number” for more examples.



Connectedness in Undirected Graphs

• An undirected graph is defined to be connected if there is a path from any 
vertex to any other vertex.

• In CMPSCI 187 we saw two methods to determine whether a structure is 
connected -- depth-first search and breadth-first search.  Each method 
successively marks vertices that are reachable from the start vertex of the 
search.  In both cases we put a vertex on an open list as soon as we find an 
edge to it.  Later we take that vertex off the open list and check all of its 
edges to see whether more vertices should go on the open list.  In DFS the 
open list is kept as a stack, and in BFS it is kept as a queue.

• A connected component in an undirected graph is the set of nodes that 
have paths to some given node.  A DFS or BFS marks all the nodes in the 
connected component of the start node.  A graph is connected if and only if 
all the vertices are in the same connected component.



iClicker Question #2: Connected Components

• How many connected components does the graph below have?

• (a) One

• (b) Two

• (c) Three

• (d) Four



Strong Connectedness in Directed Graphs

• In a directed graph, it is possible for there to be a path from vertex u to vertex 
v without there being a path from v to u.  We thus have to be more careful 
about the definition of connectedness.  We define a directed graph to be 
strongly connected if there is a path from any vertex u to any vertex v.

• We still have strongly connected components with this notion -- the 
strongly connected component of vertex u consists of all those vertices v 
such that there are paths both from u to v and from v to u.

• One strongly connected component may have a path to another, or a path 
from another, or neither, but not both.

• A DFS or BFS starting at vertex u will find all vertices reachable from u.  To 
find strongly connected components efficiently requires a trick that you will 
see in CMPSCI 311.



Articulation Points

• Some connected graphs are more connected than others.  Let’s look at 
simple graphs to keep things easier.  An articulation point is a vertex v in a 
connected graph G, such that G is no longer connected if we remove v (and 
its accompanying edges).  

• For v to be an articulation point, there must be two other vertices u and w 
such that every path from u to w goes through v.  (Thus u and w are in 
different connected components after v is removed.)

• A simple graph (with three or more vertices) is called biconnected if it is 
connected and has no articulation points.  It’s called k-connected if you can 
remove any k-1 points and the remaining graph is still connected.

• A multiply connected graph is clearly better for a communication network, 
because it can more easily tolerate node failures.



iClicker Question #3: Articulation Points

• What is the set of articulation points of the graph below?

• (a) G and H only

• (b) A, G, and H

• (c) A, G, H, and E

• (d) Every vertex except J



Counting Paths With Matrices

• We called our adjacency matrices “matrices” rather than just arrays, because 
treating them as matrices has a useful computational meaning.  Remember 
that in a directed multigraph, the (u, v) entry of the adjacency matrix A tells us 
how many edges there are from u to v.

• Because A is an n by n matrix, we can multiply it by itself.  In fact, we can 
define powers of A by a recursive definition similar to that for powers of 
integers.  A0 is defined to be the n by n identity matrix I, with 1’s on the main 
diagonal and 0’s everywhere else.  (You should know that AI = IA = A for any 
A.)  Then for any i, we define Ai+1 to be Ai  times A.  So, for example, A3 is A 
times A times A, just as x3 is x times x times x.

• We’ll now prove that the entries of At have a specific meaning in the graph.  
The Path-Matrix Theorem says that the (u, v) entry of At is the number of 
paths of length t from u to v.  We’ll prove this by induction on t.   



iClicker Question #4: Counting Paths

• How many three step paths are there from 
vertex 4 to vertex 3 in this directed graph?

• (a) two

• (b) three

• (c) four

• (d) more than four



Counting the Paths With Matrices

• The red (4,3) entry of A3 gives the number of three-
step paths from vertex 4 to vertex 3.

01001
00010
00000
11001
10010

10020
11001
00000
11021
12002

23003
11021
00000
33023
21041

A A2 A3



Proving the Path-Matrix Theorem

• The base case of t = 0 is easy.  A path of length 0 can have no edges, so it 
must go from a vertex u to itself.  There is exactly one length-0 path from u to 
itself, and no length-0 paths from any vertex to any other vertex.  Thus the 
number of length-0 paths from u to v is just the (u, v) entry of the matrix I = A0.

• Now assume that for any u and v, the (u, v) entry of Ai gives the number of 
length i paths from u to v.  We need to show that the number of length i+1 
paths from u to v is exactly the (u, v) entry of the matrix Ai+1 = Ai⋅A.  By the 
definition of matrix multiplication, (Ai+1)u,v is the sum, over all vertices w, of 
(Ai)u,w times (A)w,v.  

• But how can we have a path of length i+1 from u to v?  It must follow i edges 
to some vertex w, then continue on a last edge to v.  How many ways are there 
to do this?  For each w, there are (Ai)u,w length-i paths from u to w, and (A)w,v 
edges from w to v.  The total number is exactly the sum given for (Ai+1)u,v.



The General Path-Matrix Theorem
• In our proof of the Path-Matrix Theorem, we used only a few basic facts 

about “addition” and “multiplication”, such as the distributive law.  What this 
means is that the theorem holds even if we redefine “addition” and 
“multiplication”, as long as our new operations follow those laws.

• We proved that the (u, v) entry of At is the “sum”, over all paths of length 
exactly t from u to v, of the “product” of the labels of the edges on the path.  
In the path-counting version, the label was the number of edges, so the 
product of the labels was the number of ways to visit a particular sequence of 
vertices.

• If we redefine “sum” to mean OR and “product” to mean AND, we get that 
(At)u,v is 1 if there is any path of length t from u to v, and 0 if there is no path.  
By combining the matrices Ai for all i less than n, we can find out whether 
there is a path of any length.

• In Monday’s discussion we’ll use a similar idea to find shortest paths.


