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Modeling Connections

• Many situations in the real world may be modeled as a set of things, some of 
which are connected to others.  Cities are connected by roads, airports by 
flights, Facebook customers by links to their friends, pages on the web by 
links to other pages.  Graph theory is the branch of mathematics that deals 
with such situations.

• Often we are interested only in the fact of the connection between two things, 
the binary relation that says “x and y are connected”.  In this case a graph is 
just a way of drawing a binary relation, with a dot or vertex for each element 
of the base set and a line or edge from x to y whenever x and y are 
connected.  In some cases we are modeling a binary relation that is not 
symmetric, so that x could be connected to y without y being connected to x. 
In this case we draw an arrow or arc or directed edge from x to y.

• In other cases we add labels to the arcs or edges, giving distances, costs, or 
other information about that particular connection.



Different Types of Graphs

• The different types of connections give us several different types of graphs -- 
Rosen defines six.  When we model a situation with a graph, we must decide 
whether connections must be symmetric and thus whether our edges are 
directed.  We also need to decide whether it makes sense to have more than 
one parallel edge with the same endpoints, or to have edges from a vertex to 
itself, called loops.  Rosen’s definitions are in a table on page 644.

• In Rosen’s terminology, a simple graph has undirected edges but no parallel 
edges or loops.  Two other types have multiple edges: a multigraph may 
have parallel edges but not loops, and a pseudograph may have either 
parallel edges or loops.

• A simple directed graph has directed edges but no parallel edges or loops.  
A directed multigraph may have either parallel edges or loops, and a mixed 
graph may have edges that are either directed or undirected.



iClicker Question #1: Graph Examples

• What type of graph is pictured at right?

• (a) a simple graph

• (b) a multigraph

• (c) a simple directed graph

• (d) a directed multigraph



Some Terminology

• If x is a vertex in an undirected graph, another node y is x’s neighbor if there 
is an edge between x and y.  The neighborhood of x is the set of all its 
neighbors, and the neighborhood of a set of vertices A is the set of all nodes 
that are neighbors of any vertex in A.

• The degree of a vertex in an undirected graph is its number of neighbors.  In 
a directed graph, a vertex has both an in-degree (number of arcs into it) and 
an out-degree (number of arcs out of it).  Rosen refers to vertices of degree 0 
as isolated and vertices of degree 1 as pendant.

• The handshaking theorem says that the sum of the degrees of all the 
vertices is equal to twice the number of edges.  This follows from the fact that 
each edge contributes one to the degree of each of its endpoints, and thus 
contributes two to the sum.  This result works for multiple edges as well, and 
works for loops as long as we count the loop twice for the degree. 



iClicker Question #2: The Handshake Theorem

• We say that a vertex of a simple graph is odd if it has an odd number of 
neighbors, and even if it has an even number of neighbors.  Which of these 
four situations is impossible in a simple graph?

• (a) There is an even number of even vertices.

• (b) There is an odd number of even vertices.

• (c) There is an even number of odd vertices.

• (d) There is an odd number of odd vertices.



Families of Named Graphs

• To have examples easily at hand, it’s useful to give names to some standard 
families of graphs.

• If n is a positive integer, the complete graph Kn has n vertices and an edge 
between every pair of distinct vertices.  K1 has no edges, K2 has 1, K3 has 3, 
and in general Kn has n(n-1)/2.

• If n ≥ 3, the cycle Cn has n vertices v1,..., vn and n edges, with each vi being 
connected to vi+1 and vn being connected to v1, so that every vertex has 
degree 2.  The wheel Wn has n+1 vertices, n of them making a copy of Cn  
and the last connected to each of the first n.  It has 2n edges: the first n 
vertices each have degree 3 and the last has degree n.

• The n-dimensional hypercube Qn has 2n vertices, one for every binary string 
of length n, and a edge between the vertices for strings u and v if and only if u 
and v differ in exactly one bit.



Bipartite Graphs

• Suppose that A and B are two sets and we have a relation R ⊆ A × B, so that 
R(a, b) is true or false for each choice of a in A and b in B.  We can draw a 
graph where there are vertices for each element of A and each element of B, 
and an edge between a and b whenever R(a, b) is true.

• This graph has the property that every edge has one endpoint in A and the 
other in B.  If we look at any undirected graph, we say that it is bipartite if it is 
possible to divide the vertex set V into two subsets A and B, such that all 
edges have this property.

• It’s easy to test whether a simple graph is bipartite.  We make a greedy two-
coloring of the vertices, beginning with an arbitrary vertex that we color red.  
We then color the neighbors of red vertices blue, and neighbors of blue 
vertices red, as long as we can.  If we fail, then the graph is not bipartite.  If 
we finish and there are uncolored vertices left, we start again with one of 
them.  A theorem says a graph is bipartite if and only if it has no odd cycle.



iClicker Question #3: Which is Not Bipartite?

• Here are four graphs, three of which are bipartite.  Which graph is not 
bipartite?  That is, which graph’s vertices cannot be two-colored so that no 
edge connects two vertices of the same color?

A B

DC



Hall’s Theorem
• A matching in a bipartite graph is a set of edges that represents a one-to-one 

function from A to B -- it must have exactly one edge for each element of A 
and no two edges may share an endpoint in B.  Hall’s Theorem, proved by 
Philip Hall around 1928, is a criterion for when a matching exists.

• If X is any nonempty subset of A, let N(X) be its neighborhood.  We say that X 
is a bottleneck if |N(X)| < |X|, and say that X is tight if |N(X)| = |X|.  Hall’s 
Theorem says that a matching exists if and only if there is no bottleneck.

• It’s easy to see that no matching can exist if there is a bottleneck.  The 
difficulty is to prove that a matching must exist if there isn’t one.  We do this 
by a strong induction.  Our statement P(k) is “if a subset X of A, with k 
elements, has no bottleneck subset, then it has a matching”.

• For the base case, if |X| = 1 and X is not a bottleneck, it has a matching.



More of the Proof of Hall’s Theorem

• So now we assume P(j) for all j with j ≤ k.  That is, if any nonempty set of size 
at most k has no bottleneck subset, it has a matching.  We then need to 
prove P(k+1) to complete the strong induction.  This says that if |X| = k+1, and 
X has no bottleneck subset, then X has a matching.  We prove this with two 
cases.

• First assume that X has no proper tight subset.  Pick any element z of X, let b 
be one of its neighbors in B, and remove both z and b from consideration.  
The resulting set X ∖ {z} has k elements, so by the IH it has a matching unless 
it has a bottleneck.  But it can’t have a bottleneck, because we removed only 
one element of B and every subset had an extra neighbor in B because it was 
not tight.  So we have this matching on X ∖ {z}, which becomes a matching 
on X when we reinsert z and connect it to b.  We’ve proved P(k+1) for this 
case.



Finishing the Proof of Hall’s Theorem

• The other case is when X has a proper tight subset Y.  

• Since Y is a proper subset of X, it has at most k elements.  It has no 
bottleneck because if it did, X would have a bottleneck.  So by the IH, Y has a 
matching.  

• Remove Y and its matched elements of B from consideration.  We have left a 
proper subset Z of X, and some remaining elements of B.  We need to prove 
that Z has no bottleneck -- then it has a matching which we can combine with 
Y’s matching to get a matching on X.

• Suppose that W were a bottleneck in Z.  Consider the set W ∪ Y with the 
partners of Y’s elements returned to consideration.  If W had fewer than |W| 
neighbors without Y’s partners, then W ∪ Y would have had fewer than |W ∪ Y| 
neighbors originally, and been a bottleneck in X.  But X had no bottlenecks.



Operations on Graphs

• There are various operations and relations defined on graphs, of which we will 
define a few.  The word subgraph has a variety of definitions -- Rosen says 
that if G = (V, E) is a graph, then H = (V’, E’) is a subgraph of G if V’ ⊆ V and E’ 
⊆ E.  Note that the edges in E’ may only involve the vertices in V’, for H to be 
a properly defined graph.

• If G = (V, E) is a graph and V’ ⊆ V, the subgraph induced by V’ has V’ as its 
vertices and has all the edges of E that use only vertices in V’.

• If G and H are graphs with the same vertex set V, we can make the union or 
intersection of the two graphs by unioning or intersecting their edge sets.

• More generally, we can take the union or intersection of any two graphs by 
taking the union or intersection of both the vertex sets and edge sets.



Representations of Graphs

• Representing a graph in a computer is essentially a matter of representing the 
edge predicate.  Different data structures to do this have different advantages.

• If G = (V, E) and |V| = n, the adjacency matrix of G is an n by n matrix whose 
rows and columns are indexed by elements of v.  The (u, v) entry of the matrix 
is 1 if there is an edge from u to v and 0 otherwise.  More generally, in a 
multigraph the (u, v) entry of the matrix gives the number of edges from u to v.

• In CMPSCI 311, you’ll more often represent graphs by an adjacency list, 
where for each vertex u you have a list of the vertices v such that there is an 
edge from u to v.  If the graph is sparse (has many fewer than n2 edges), an 
adjacency list is much smaller than an adjacency matrix and allows for many 
faster algorithms.

• There’s also the incidence matrix, with rows for vertices and columns for 
edges.  The (v, e) entry is 1 if v is an endpoint of e, and 0 otherwise.



The Idea of Isomorphism

• It’s often possible for two objects to be equal in all essential respects without 
being identical as data structures.  In Java classes we write an equals 
method to tell when this happens.  In mathematics we often define what it 
means for two objects of the same type to be isomorphic. 

• In general an isomorphism is a one-to-one, onto function from one object to 
another that preserves the important properties of the object.  For example, 
an isomorphism of sets is a bijection, and two sets are isomorphic if they 
have the same cardinality.  

• In linear algebra, an isomorphism is a linear map (homomorphism) from one 
vector space to another that is also a bijection.  Two vector spaces over the 
same field are isomorphic if they have the same dimension.



Graph Isomorphism

• Let G = (V, E) and H = (V’, E’) be two graphs.  A function f is an isomorphism 
of G and H if it is a bijection from V to V’, and for any vertices u and v in V, 
there is an edge in Efrom u to v if and only if there is an edge from f(u) to f(v) in 
E’.  We can think of an isomorphism as a renaming of the vertices of G that 
makes the resulting graph identical to H.

• If G and H are isomorphic graphs, they must have the same number of 
vertices and same number of edges.  For graphs of 1, 2, or 3 vertices, any 
pair of graphs with the same number of both nodes and edges are 
isomorphic.  But for 4-node simple graphs we have two different graphs with 
two edges, three with three, and two with four.



iClicker Question #4: Graph Isomorphism

• Here are five simple graphs.  Exactly one of the graphs A, B, C, and D is 
isomorphic to graph E.  Which one is isomorphic to E?

A B

C

E

D


