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Mathematical Induction

• Proving Statements for All Natural Numbers

• Why is Induction Valid?

• Arithmetic and Geometric Sums

• Counting Subsets and Strings

• Creative Induction: Odd Pie Fights

• Wrong Induction: Elvis is Everybody

• Tilings Again



Proving Statements for All Natural Numbers

• We’re now going to learn the important proof technique of mathematical 
induction.  Although there are other important forms of it, we will first look at 
the version that is used to prove a statement of the form ∀n:P(n), where the 
type of n is “natural number”.  This means that P(0), P(1), P(2), and all other 
statements of the form P(n) are true.  But we don’t have time to prove all 
these statements individually.

• Let’s see an example before the formal definition of the technique.  Let P(n) 
be the statement “the sum of the first n positive odd numbers is n2”.  P(0) 
says the sum of the first 0 numbers is 02, and this is true.  P(1) says that the 
sum of the first 1 number is 12, and this is true.  P(2) says that 1 + 3 = 22, 
which is again true.  P(3) says that 1 + 3 + 5 = 32.  But no matter how many 
instances of P(n) we check, we won’t be able to prove ∀n:P(n) by just 
checking instances.



An Induction Proof

• The induction proof of ∀n:P(n) begins with the base case.  We must prove the 
statement P(0), which we just did by observing that a sum of no numbers 
must be 0, and P(0) says that this sum is supposed to be 02.  Base cases are 
usually, but not always, easy to prove.

• Next we must do the inductive step.  We let n be arbitrary and assume that 
the statement P(n) is true -- P(n) is now called the inductive hypothesis.  So 
we are assuming that the sum of the first n odd numbers is n2.  Now we have 
to prove that P(n+1) is true, and P(n+1) says that the sum of the first n + 1 
odd numbers is (n+1)2.  Clearly the sum of the first n + 1 odd numbers is the 
sum of the first n odd numbers, added to the n+1’st odd number.  What’s the 
n+1’st odd number?  It is 2n +1 (we can convince ourselves of this easily, 
though formally we could do another induction proof).  That means that given 
our inductive hypothesis, the sum of the first n + 1 odd numbers is n2 (for the 
first n) + (2n + 1) which is n2 + 2n + 1 which equals (n + 1)2.  We have proved 
P(n+1), which completes the inductive step and completes the proof.



Formal Definition of Induction

• The Law of Mathematical Induction says that given the two statements P(0) 
and ∀n:P(n) → P(n+1), we may derive the statement ∀n:P(n).

• An induction proof thus breaks down into the steps we just saw: (1) prove 
P(0), the base case, (2) let n be arbitrary and assume P(n), the inductive 
hypothesis, (3) prove P(n+1) using this hypothesis, the inductive step.

• It’s a bit of a strange idea to prove a ∀n statement by proving a more 
complicated ∀n statement.  But in fact the inductive step is often easier 
because we have the inductive hypothesis as a premise when we set out to 
prove P(n) → P(n+1).

• Induction also looks like circular reasoning, in that we assume P(n) on the way 
to proving ∀n:P(n).  But it is the fact that we can get from P(n) to P(n+1) that 
makes the induction proof valid.



iClicker Question #1: Parts of an Inductive Proof

• Suppose I want to prove that for any natural number n, the number n2 + n is 
even.  The statement “02 + 0 is even” would be what part of the proof?

• (a) The base case

• (b) The inductive hypothesis

• (c) The inductive step

• (d) The conclusion



Why is Induction Valid?

• In 1889 Giuseppe Peano formulated a set of axioms for the natural numbers, 
which we can paraphrase as follows:

• The last axiom tells us that mathematical induction works, because we prove 
that the set S = {n: P(n) is true} both contains 0 and is closed under 
successor.  Then the axiom tells us that all natural numbers are in S.

• When we prove ∀n:P(n) by induction, we also prove that for any particular 
natural k, there is a chain of implications P(0) → P(1) → P(2) → ... → P(k) that 
we could eventually use to prove P(k) from P(0) by Modus Ponens k times.

(1) 0 is a natural number
(2) Every natural number has a unique successor which is a natural number.
(3) 0 is not the successor of any natural number.
(4) Every natural number except 0 is the successor of exactly one natural number.
(5) Any set of natural numbers that contains 0, and is closed under successor, is the 
set of all natural numbers.



Summing the First n Positive Numbers

• You have probably learned somewhere that the sum of the first n positive 
numbers is n(n+1)/2 -- let’s prove this.  Let S(n) denote the sum of the first n 
numbers, and let P(n) be the statement “S(n) = n(n+1)/2”.  (Note, not for the 
last time, that P(n) is a boolean statement, not a number.)

• For the base case, P(0) says that S(0) = 0(0+1)/2 = 0, which is true.

• We assume that S(n) = n(n+1)/2.  By the definition of S, S(n+1) = S(n) + (n+1).  
Applying the inductive hypothesis, S(n+1) = n(n+1)/2 + (n+1).  By algebra, this 
is (n+1)(n/2 + 1) = (n+1)(n+2)/2, which is just what P(n+1) says it should be.

• We have completed the inductive step and thus completed the proof.



Sums of Arithmetic Progressions

• An arithmetic progression a0, a1, a2, ..., an is a sequence of numbers where 
each number ai+1 is equal to ai + c, for some constant c.  Let P(n) be the 
statement that the sum a0 + ... + an  is equal to (n+1)(a0 + an)/2.

• The base case P(0) says that the sum a0 equals (0+1)(a0 + a0)/2, which is true.

• Let S(n) be the sum a0 + ... + an, so that S(n+1) = S(n) + an+1.  The inductive 
hypothesis P(n) says that S(n) = (n+1)(a0 + an)/2, so if we assume P(n) we have 
that S(n+1) = (n+1)(a0 + an)/2 + an+1.  Let’s write an as an+1 - c, so that we get 
S(n+1) = (1/2)((n+1)a0 + (n+1)(an+1 - c) + 2an+1).  Write one of the two an+1’s as 
a0 + (n+1)c and leave the other one alone -- we get (1/2)((n+1)a0 + (n+1)an+1 - 
(n+1)c + a0 + (n+1)c + an+1) = (1/2)((n+2)a0 + (n+2)an+1).  This is just what the 
statement P(n+1) says it should be, so we have completed the inductive step 
and completed the proof. 



Sums of Geometric Progressions

• A geometric progression a0, ..., an is a sequence of numbers where each ai+1  
is equal to rai for some constant r, so that ai = a0ri.  Let’s prove that the sum a0 
+ ... + an = (a0 - an+1)/(1 - r), assuming that r ≠ 1.  Again let S(n) be the sum, 
and let P(n) be the statement that S(n) has the correct value.

• For the base case, P(0) says that S(0) (which is just a0) is (a0 - a1)/(1 - r) which 
is true because a1 = ra0.

• Assume as IH that S(n) = (a0 - an+1)/(1 - r).  Then S(n+1) is defined to be S(n) + 
an+1 which by the IH is (a0 - an+1)/(1 - r) + an+1 = (a0 - an+1 + (1 - r)an+1)/(1 - r) = 
(a0 - an+1 + an+1 - ran+1)/(1 - r) = (a0 - an+2)/(1 - r) because an+2 = ran+1.  This is just 
what the statement P(n+1) says that S(n+1) should be, so we have completed 
the inductive step and completed the proof.



iClicker Question #2: Proving an Inequality

• Let P(n) be the statement “n! ≤ nn”.  (Remember that “n!”, called “n factorial”, 
is the product 1⋅2⋅...⋅n.)  If we want to prove this statement by induction, 
what should be our inductive step?

• (a) “Observe that 0! ≤ 00, since both empty products are 1.”

• (b) “Assume that n! ≤ nn.”

• (c) “Given that n! ≤ nn, prove that (n+1)! ≤ (n+1)n+1.”



Counting Subsets and Strings

• We learned earlier in the course that a set with k elements has exactly 2k 
subsets.  (That is, the power set of a k-element set has exactly 2k subsets in 
it.)  We can prove this statement by induction as well.  Let P(n) be the 
statement “any n-element set has exactly 2n subsets”.

• For the base case, the empty set has exactly one subset (itself), and 20 = 1.

• Assume as IH that any n-element set has exactly 2n subsets.  Let S be an 
arbitrary n+1-element set, and note that S is T ∪ {x} where T is an n-element 
set and x is some element.   By the IH, T has exactly 2n subsets.  Each of 
these subsets Z gives rise to exactly two subsets of S, Z and Z ∪ {x}.  And 
every subset of S must be either a subset of T, or a subset of T with x unioned 
in.  So the number of subsets of S is exactly 2 times 2n, or 2n+1, just as P(n+1) 
says it should be.  This completes the inductive step and thus also the proof. 



iClicker Question #3: Counting Strings

• An almost identical induction proof tells us that there are exactly 2n binary 
strings of length n.  What is the inductive hypothesis of this proof?

• (a) “Assume that there is exactly one binary string of length 0.”

• (b) “If there are 2n binary strings of length n, there must be 2n+1 binary strings 
of length n + 1.”

• (c) “Assume that there are exactly 2n binary strings of length n.”



Creative Induction: Odd Pie Fights

• Here’s a somewhat different use of induction to prove a geometric result.  
We’re going to stage a pie fight by placing an odd number of people in the 
plane, in such a way that every pair of people has a distinct distance between 
them.  At a signal, each person will throw a pie at the closest other person.  
Although n total pies are thrown at n people, we will show that at least one 
person does not get hit with a pie.

• Let P(k) be the statement “in such a fight with 2k + 1 people, at least one 
person is not hit”.  P(0) is true because with one person, there is no one else 
to throw a pie at them and they are not hit.  Assume that P(k) is true and look 
at a pie fight with 2k + 3 people.  One pair of people, whom we may call x and 
y, have the shortest distance of any pair and thus throw pies at each other.  
Now look at the other 2k + 1 people.  If none of them throw at x or y, they are 
in a 2k + 1 person pie fight and the IH says that one of them is not hit.  But if 
they do throw at x or y, they are just removing pies from a 2k + 1 person pie 
fight and there is still a person not hit.  (Everyone of the other 2k + 1 people 
who does not throw at x or y throws at their closest person among the others.)



Wrong Induction: Elvis is Everybody

• Here is an invalid proof that you are the late Elvis Presley, in fact that 
everyone is Elvis.  We let P(n) be the statement “in any set of n people that 
includes an Elvis, everyone is Elvis”.  The base case P(0) is vacuous as there 
can be no such set, and the case P(1) is obviously true.

• Assume the IH of P(n) and let S be any set of n + 1 people containing an Elvis 
named e.  Let x be some element of S other than e, and let T = S ∖ {x}.  Let U 
be the set S ∖ {e}.  T is a set of n people containing an Elvis (it contains e), so 
every member of T is an Elvis.  U is also a set of n people, and it contains an 
Elvis because we just proved that all the people in T ∩ U are Elvises.  So every 
member of U is an Elvis, and thus every member of S is an Elvis and we win.

• The problem with this proof is the n = 1 case.  If S has exactly two people, 
there are no “people in T ∩ U”, and the inference that x is an Elvis is not valid.



iClicker Question #4: Looking at the Elvis Proof

• Again, let P(n) be the statement “In any group of n people containing an Elvis, 
all are Elvises.”  For what values of n is this statement actually true?

• (a) for no values at all

• (b) only for n = 0

• (c) only for n = 0 and n = 1

• (d) only for n = 0, n = 1, and n = 2



Tilings Again

• We looked at tilings by dominoes (1 by 2 rectangles) and 
straight triominoes (1 by 3 rectangles).  What about 
covering a chessboard with L-shaped triominoes?  Of 
course we have to leave out a square, so that we can 
cover 63 squares with 21 pieces.  The figure at right 
shows that if the missing square is near the middle, we 
can do it.  Can we do it for every missing square?

• The answer is an interesting use of induction.  Let P(n) be 
the statement “any 2n by 2n board, with any one square 
missing, can be tiled with L-shaped triominoes”.  P(0) talks 
about a 1 by 1 board with one square missing, which we 
can tile with no pieces.  P(1) talks about a 2 by 2 with one 
square missing, which we can tile with one piece.  Our 
problem above is P(3).  Can we prove P(n) → P(n+1)?



The Inductive Step for Tilings

• Assume that P(n) is true, so that we can tile any 2n by 2n board with any one 
square missing.  We want to prove P(n+1), which says that we can tile a 2n+1 
by 2n+1 board with any one square missing.

• Consider such a board, and divide it into four 2n by 2n subboards.  One of the 
subboards has a square missing, because the missing square from the big 
board is in one of the four.  Place one L-shaped piece at the middle of the big 
board, so as to take one square away from each of the other three 
subboards.  Now we have four subboards, each 2n by 2n with one square 
missing.  The inductive hypothesis says that each of these subboards can be 
tiled with L-shaped triominoes.  So we have tiled the whole original board, 
except for the missing square, and we have thus proved the desired 
statement P(n+1).  By induction, P(n) must be true for all n.

• If we wanted to tile a 1024 by 1024 board with one square missing, this proof 
actually gives us a recursive algorithm to do it.


