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Proof Techniques

• Review: The General Setting for Proofs

• Types of Proof: Direct, Contraposition, Contradiction

• Types of Proof: By Cases, Exhaustive, Equivalences

• Existence Proofs

• Non-Constructive Existence Proofs

• Example: Tiling Problems



Review: The General Setting for Proofs

• Last time we described the general set-up for formal proofs.  We have 
statements we are assuming to be true, called premises, and statements we 
want to prove true, called conclusions.  There are also statements assumed 
true as part of the definitions of our terms, called axioms.  

• Our goal is to produce more statements that will be true if the premises are 
true.  We can use logical equivalences, rules of the form p ↔ q, to add new 
statements that are true if and only if existing statements are true.  And we 
can use logical implications, rules of the form p → q, to add to our store of 
true statements as well.

• Rosen points out that informal mathematical usage often leaves out the initial 
“let x be arbitrary” when we use the UG rule to prove a statement of the form 
∀x:P(x).  But we should always be aware of the role of each variable.



Types of Proof: Direct Proof

• In a direct proof of a statement of the form P →  C, we assume that P is true 
and derive C from it.  This is often done inside a UG proof.

• An even number is an integer that is 2 times an integer.  Let’s give a direct 
proof of “the square of any even number is even”, or in symbols, “∀n: E(n)  → 
E(n2)”.  We let n be arbitrary, assume that n is even, and try to prove that n2 is 
even.

• From the definition, “n is even” means that there exists a number k such that 
n = 2k.  Given that, we calculate that n2 = 4k2.  Can we show that 4k2 is even? 
Yes, it is equal to 2(2k2).  So we have established our conclusion.

• Note that formally, we use EI to introduce the variable k and EG to get rid of it, 
both times using the definition “E(n) ↔ ∃k: n = 2k”.



iClicker Question #1: Direct Proof

• I would like to make a direct proof of the statement “Every odd integer is the 
difference of two perfect squares”.  How should I start?

• (a) “Let w = x2 and y = z2 be two perfect squares.”

• (b) “Let x = 2y + 1 be an odd integer.”

• (c) “Let x = 2y + 1 be an odd integer that is not the difference of any two 
perfect squares.”

• (d) “Let x = y2 - z2 be an odd integer.”



The Forward-Backward Method and Indirect Proof

• Once we have established our premises and our conclusion, we need to 
construct a chain of equivalences and implications that lead from the 
premises to the conclusion.  To search for this, we might try to find the first 
step in the chain, by finding something we can derive from a premise.  Or we 
might find the last step in the chain, looking for something from which we can 
prove the conclusion.  Either way, we have produced a different proof 
problem, and if our choice was correct we are looking for a shorter proof.

• We’ll now see a group of methods that are collectively called indirect proof.  
These involve replacing our premise and our conclusion with a different 
premise and conclusion, or possibly a set of premise/conclusion pairs.  By 
the rules of logic, carrying out the new proof or proofs will suffice to prove our 
original premise from our original conclusion.  

• We choose these methods if they will make our proof easier, for example by 
giving us premises from which we can more easily derive more things.



Types of Proof: Contraposition

• Remember that the contrapositive of an implication “p → q” is the statement 
“¬q → ¬p”.   An implication is true if and only if its contrapositive is true, so 
we may replace the implication by the contrapositive anywhere in a proof.

• Thus if we want to prove P → C, we can do it by proving ¬C → ¬P.  A direct 
proof of ¬C → ¬P begins by assuming ¬C and then uses this assumption to 
prove ¬P.  Rosen calls this a proof by contraposition, and elsewhere it is 
often called an indirect proof.

• Let’s try a proof by contraposition for “if n = ab and both a and b are positive 
integers, then either a ≥ √n or b ≥ √n”.  The contrapositive of this is “if a < √n 
and b < √n, then n ≠ ab”.  To prove this directly, we assume that a < √n and b 
< √n, and just multiply the two inequalities together to get ab < n.

• Why would we do this?  In this case ¬C was easier to derive things from than 
was P.



Types of Proof: Contradiction

• The more and stronger premises we have, the easier it is to carry out a proof.  
In a proof by contradiction, we assume the negation of what we want to 
prove, and derive the statement “false”.  Because “0 → p” is a tautology, 
once we have one false statement we can derive any other one.  So once we 
have derived something we know to be false, for example by deriving two 
statements that contradict each other, we have proven the original statement.

• In the case of an implication P → C, the negation is P ∧ ¬C.  So we start with 
two premises, and we try to work toward a contradiction.

• Here’s a proof by contradiction of “if n3 + 5 is odd, then n is even”.  We 
assume that n3 + 5 = 2x + 1 and that n = 2y + 1.  We compute that (2y + 1)3 + 
5 = 8y3 + 4y2 + 2y + 1 + 5 = 2(4y3 + 2y2 + y + 3), an even number.  This is a 
contradiction because an integer cannot be both even and odd. 



iClicker Question #2: Proof by Contradiction

• Here are three valid proofs of the statement “Duncan is asleep” from the 
premises (1) “If Duncan is not asleep, then he is barking”, and (2) “Duncan is 
not barking”.  Which one is a proof by contradiction?

• (a) Duncan is not barking.  By Modus Tollens on the first premise, he must be 
asleep.

• (b) The contrapositive of the first premise is “if Duncan is not barking, then he 
is asleep”.  He is not barking by the second premise, so he is asleep.

• (c) Assume that Duncan is not asleep.  Then by Modus Ponens, he would be 
barking. But he is not barking.  So he is asleep.



Types of Proof: Cases and Syllogism

• As in programming, we can use the divide-and-conquer method to break 
our proof problem into two or more simpler ones.  We have two basic ways to 
do this.

• In proof by cases, we prove P → C by choosing some other proposition X 
and then proving both (P ∧ X) → C and (P ∧ ¬X) → C.  In each case we have 
more premises to work with, but the point of this is usually that C is true for 
different reasons in the two cases.

• The hypothetical syllogism rule of the propositional calculus says that we 
may derive P → C from the two implications P → X and X → C, where X is 
any proposition at all.  So by a good choice of X, we can divide our proof 
problem into two separate problems that might be easier.  Of course we must 
choose an X such that the two new implications are both true!



Types of Proof: Exhaustive

• An extension of proof by cases is exhaustive proof, named because we 
“exhaust” all the possible values for some variable.  (Though these proofs can 
sometimes be exhausting for the prover as well.)

• The method of truth tables is an exhaustive proof method for propositional 
calculus problems.  With k boolean variables, there are 2k possible settings 
for those variables, and each one is a separate case.  Each case is usually not 
difficult to evaluate, but the sheer number of cases can be prohibitive.  
Sometimes we can use the same proof for more than one case, by exploiting 
similarities between them and saying “without loss of generality (WLOG)”.

• If the number of cases is infinite, no exhaustive proof that treats one case at a 
time can be valid.  (Usually we use mathematical induction for such 
problems.)  



Proving Multiple Statements Equivalent

• If we want to prove two statements p and q to be logically equivalent, that is, 
if we want to prove p ↔ q, we can do it by proving both p → q and q → p.  
This is another divide-and-conquer step and is very common practice in 
mathematics.  We often speak of the “two halves” of an “if and only if” 
statement.

• Sometimes we have more than two statements and we want to prove that 
each one is equivalent to the others.  (For example, we might want to show p 
↔ q ↔ r ↔ s.)  Often the most efficient way to do this is to prove a chain of 
implications that allows us to get any of the propositions from any of the 
others by hypothetical syllogism.  In our example, we might prove the four 
implications p → q, q → r, r → s, and s → t.



An Equivalence Example

• Here we prove three statements about an integer n to be equivalent.  Let P(n) 
be “n is even”, Q(n) be “n - 1 is odd”, and R(n) be “n2 is even”.  We’ll do this 
by proving the three implications P(n) → Q(n), Q(n) → R(n), and R(n) → P(n).

• P(n) → Q(n):  Assume that n is even.  Then n = 2k for some integer k.  Then 
we compute that n - 1 = 2k - 1 = 2(k - 1) + 1, and by definition n - 1 is odd.

• Q(n) → R(n):  Assume that n - 1 is odd.  Then n - 1 = 2k + 1 for some integer 
k.  So n = 2k + 2 and n2 = (2k + 2)2  = 4k2 + 8k + 4 = 2(2k2 + 4k + 2) which is 
even by the definition of even numbers.

• R(n) → P(n): Instead we choose to prove ¬P(n) → ¬R(n).  Assume that P(n) is 
false, so that n is odd.  Then n = 2k + 1 for some integer k and n2 = 4k2 + 4k + 
1 = 2(2k2 + 2k) + 1 which is odd.  So R(n) is false and we are done.



Existence Proofs

• When we are proving a statement of the form ∃x:P(x), the EG rule tells us that 
it is enough to find a particular value a such that P(a) is true.  This is called a 
constructive existence proof.

• For example, to prove “∃x:∃y: x2  = y3 + 1”, where the type of x and y is 
“integer”, I could try various small values of x and y until I find x = 3 and y = 2.

• But this is not always so easy.  Consider the polynomial p(x) = x2 + x + 41, 
where x is a natural number.  We can compute p(0) = 41, p(1) = 43, p(2) = 47, 
p(3) = 53, p(4) = 61, and notice that all the values are prime numbers.  In fact 
the smallest counterexample to “p(x) is prime” is 41.  There are other cases 
where long computer searches have found counterexamples to conjectures in 
number theory, and others where it is not known whether such 
counterexamples exist at all.



Non-Constructive Existence Proofs

• Sometimes you can prove that an object exists without naming it, by a 
nonconstructive existence proof.  We give two examples.

• A rational number is a real number that can be written as p/q where p and q 
are both integers.  We prove “there are irrational numbers x and y such that xy 
is rational”.  It’s proved elsewhere in Rosen that √2 is irrational.  Let z be the 
number √2√2.  If z is rational, then we prove our theorem with x = y = √2.  But 
if z is irrational, we note that z√2 = (√2√2)√2 = (√2)2 = 2 is rational.  So we can 
prove our theorem with x = z and y = √2.  We don’t know which case holds in 
the real world, so we don’t know which x and y are the right ones, but we 
know that such an x and y exist.



The Game of Chomp
• Chomp is a two-player game played with a set of cookies laid out in an m by 

n rectangular array.  The top left cookie is “poisoned”, and the player who 
takes it loses.  A legal move is to take any cookie, along with all the cookies 
to the right of it and below it.

• We know that one player must have a winning strategy, but which?  It turns 
out that we can prove that for any m and n, the first player has a winning 
strategy.  But this proof is nonconstructive and doesn’t tell us the strategy!

• Here’s the argument.  Consider the first player’s move that eats just the 
cookie at the bottom right.  Either this leaves the second player in a losing 
position, or the second player has a move x that puts her in a winning 
position.  Clearly the first player has a winning strategy in the first case.  But 
in the second case, we can see that x was an option for the first player on her 
first move.  Since x would then put the second player in a losing position, the 
first player has a winning strategy beginning with m.



iClicker Question 3: Chomp

• Which statement is true about games of Chomp when m = 1, so that there 
are n cookies in the first row and no others?

• (a) The first player can always win by eating one cookie on her first move.

• (b) The first player has a winning strategy if n > 1, but not if n = 1.

• (c) The second player has a winning strategy for every positive n.

• (d) Trick question -- (a), (b), and (c) are all false.



Tiling Problems

• Many puzzles involve finding a particular 
pattern out of a large number of 
possibilities.  For example, tiling 
problems give us a geometrical figure to 
cover with some type of smaller figures.  
Here a valid covering has every piece of 
the large figure assigned to a small figure, 
and no overlap between small figures.

• For example, suppose we want to cover 
an 8 by 8 chessboard with 1 by 2 
rectangles, called dominoes.  This is not 
difficult at all.  But what if we first remove 
two opposite corners from the 
chessboard?



Tiling Chessboards With Holes

• We can prove that no domino tiling of the 62-square 
figure at right is possible.  The figure has 32 white 
squares and 30 black ones, but every domino covers 
one white and one black square.

• The extra-credit question on HW#4 has you show that 
an 8 by 8 chessboard with two holes can be tiled with 
dominoes if the holes are on squares of opposite color.

• What about tiling the chessboard with 1 by 3 
rectangles or triominoes?  We need to delete one 
square, of course, but it turns out that this is not 
enough.  The figure at right has letters to represent 
three colors, and any triomino covers one square of 
each color.  But we have 21 A’s, 22 B’s, and 20 C’s.  
Could we do it if we removed the northeast B instead?

ABCABCAB
BCABCABC
CABCABCA
ABCABCAB
BCABCABA
CABCABCA
ABCABCAB
BCABCAB



iClicker Question #4: An Easy Tiling Question

• To the left are three 3 by 3 rectangles, each with one square 
(the colored one) removed.  Which one cannot be tiled with 
four 1 by 2 dominoes?

• (a) A cannot be tiled, B and C can

• (b) B cannot be tiled, A and C can

• (c) C cannot be tiled, A and B can

• (d) Trick question, any of the three can be tiled

A

B

C


