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In lecture we have faced the problem of taking a particular language and constructing a regular
expression for it. Our goal is to get a regular expression that represents all the strings that are in
the language, but no strings that are not in the language. There is a basic strategy for this problem
— find a regular expression that represents only desirable strings, see whether it represents all
the desired strings, and if not construct another regular expression for some of the strings that it
misses.

In the discussion and/or lecture we’ll look at three examples:

e The language of strings with an even number of a’s, which has expression (b + ab*a)*,

e The language F' = (a + ab)*, equal to the set of strings that do not start with b and have no
bb substring.

e The language No-aba of strings that never have aba as a (consecutive) substring.

The language Yes-aba has the simple regular expression >*abaX*, where ¥ is an abbreviation for
a+b. It’s harder to get an expression for No-aba — our basic idea is to find classes of strings that
don’t have aba’s, and union them together until we have everything possible. We can start with a*
and b*, since a string needs both a’s and b’s to have an aba.

We need to look at each b in the string and make sure that it is not part of an aba. Each b must
be the first letter, be the last letter, or have a b either before it or after it. So any b except for
the first or last letter must come in a group of two or more b’s. The language of groups of two or
more b’s is bbb* (not (bbb)*) and so (a + bbb*)* is the set of all strings where the b’s come in such
groups. We could have any string of this type, with an optional single b before and/or after. A
correct regular expression for No-aba is thus (b + X\)(a + bbb*)*(b + \), where A is an abbreviation
for 0*. We can check that a* and b* are contained within this language, so we don’t have to add
them in separately.



Writing Exercise:

Construct a regular expression for the set EE (“even-even”) of strings in {a,b}* that have both an
even number of a’s and an even number of b’s. Justify your answer carefully — explain why your
expression generates only even-even strings and why it generates all even-even strings.

Note that all even-even strings have even length, so you may think of the whole string as being
broken up into two-letter blocks.

We’ve broken this problem into subproblems. You are not required to use them to solve the main
problem, but they will probably be useful.

Define the language EEP (“even-even-primitive”) of nonempty strings that are in EF and have
no proper substring in EE. (That is, if w € EEP and w = uwv with both v and v in FE, then
either u = X or v = \.) It turns out that while EEP is harder than E'F to describe in English, it
has a simpler regular expression.

e Explain why EE = (EEP)*.

e Which strings of zero, two, four, and six letters are in FEP? (Hint: There are one zero-letter
string, two two-letter strings, four four-letter strings, eight six-letter strings, and 16 eight-
letter strings in EEP. Make sure you don’t include strings that can be factored into smaller
ones in FE.)

e Construct a regular expression for EEP, and explain why this solves the main problem. (If
you don’t find a pattern in the six-letter strings, try the eight-letter ones...)



