CMPSCI 250: Introduction to Computation

Lecture #34: Killing λ -Moves: λ -NFA's to NFA's David Mix Barrington 18 April 2012

Killing $\lambda\text{-Moves: }\lambda\text{-NFA's to NFA's}$

- Review: Kleene's Theorem Overview
- The Construction
- A Three-State Example
- Finishing the Example
- Validity of the Construction
- The Main Lemma
- The Case of Empty Strings

Review: Kleene's Theorem Overview

- Our current project is to prove Kleene's Theorem, which says that a language has a regular expression if and only if it has a DFA. After yesterday's lecture, we know that a language has a DFA if and only if it has an ordinary NFA, with no λ -moves.
- But when we convert regular expressions to machines, it will be much easier to have λ -moves available to us. To get away with this, we need to be able to convert a λ -NFA to an equivalent ordinary NFA. That is today's task.
- In one sense this construction is not costly -- the ordinary NFA we produce has the same number of states as the λ -NFA. But it is technically the most complicated construction in the Kleene's Theorem proof, and it will involve a fair number of inductive proofs to prove the construction correct.

The Construction

- Assume that we have a λ -NFA M, and we want to make an equivalent ordinary NFA N. M and N will have the same state set, start state, and input alphabet. Furthermore, *if* $\lambda \notin L(M)$, they also have the same final state set.
- The construction has three parts. We consider the transitions in two groups, the **letter moves** and the λ -moves.
- We first add λ -moves to M until they are **transitively closed**, meaning that any λ -path has an equivalent λ -move.
- We then make the letter moves of N by finding all paths of M that read exactly one letter. We can find these by taking all three-step paths of a λ -move, a letter move, and a λ -move. (We ignore multiple copies of the same move.)
- If $\lambda \in L(M)$, we add the start state i to the final state set of N.

A Three-State Example

- Define a λ -NFA with state set {p, q, r}, start state p, final state set {q}, input alphabet {a, b}, and $\Delta = \{(p, a, q), (q, \lambda, r), (r, \lambda, p), (r, b, r)\}.$
- There are two letter moves and two λ -moves. For the transitive closure we must add one more move (q, λ , p).
- The letter move (p, a, q) gives us a letter move *from* any state with a λ-move to p, *to* any state with a λ-move from q. This gives us all nine possible amoves, since we can get from anywhere to p and from q to anywhere on λ.
- The letter move (r, b, r) gives us letter moves from either q or r to either r or p. There are four such b-moves, so the ordinary NFA has 13 letter moves in all.
- Since $\lambda \notin L(M)$, we don't need to alter the final state set of the ordinary NFA.

Finishing the Example

- Let's form a DFA from this NFA. The start state of the DFA is {p}. We compute $\delta(\{p\}, a) = \{p, q, r\}$ (and in fact δ takes any nonempty set and a to {p, q, r}), and $\delta(\{p\}, b) = \emptyset$. We then compute $\delta(\{p, q, r\}, b) = \{p, r\}$ and $\delta(\{p, r\}) = \{p, r\}$. We have completed the Subset Construction with only four of the possible eight states being reachable.
- This DFA is also the minimal DFA. We could carry out the construction, but it is perhaps easier just to show that the three non-final states are pairwise distinguishable. (Of course the single final state, {p, q, r}, is in a class by itself.) The string a distinguishes either {p} or {p, r} from Ø, and the string b distinguishes {p} and {p, r} from each other.

Validity of the Construction

- Let's now assume that we have carried out this construction on a λ-NFA M to produce an ordinary NFA N -- we would like to prove that L(M) = L(N).
- We would like it to be true that for any string w, the set of states q such that $\Delta_{M}^{*}(i, w, q)$ is exactly the set of states r such that $\Delta_{N}^{*}(i, w, r)$. But we can't do this for the empty string, because there might be more than one state of M reachable on λ , but in an ordinary NFA the only λ -path from i goes to i itself. This is why we altered the final state set of N.
- We will thus have a Lemma that these two sets are equal for any *nonempty* string, and we will prove this by induction on strings.
- We then have to account for empty strings, and make sure as well that our change to the final state set does not affect the membership of any nonempty strings.

The Main Lemma

- To save subscripts, we will refer to the relations for M as Δ and Δ*, and those for N as Γ and Γ*. We are proving ∀w: (w ≠ λ) → [∀q: Δ*(i, w, q) ↔ Γ*(i, w, q)].
- Remember that Δ^* with middle term λ is defined in terms of λ -paths, and that $\Delta^*(i, wa, q)$ is defined to be $\exists r: \exists s: \exists t: \Delta^*(i, w, r) \land \Delta^*(r, \lambda, s) \land \Delta(s, a, t) \land \Delta^*(t, \lambda, q)$.
- $\Gamma(s, \lambda, t)$ means just s = t, and $\Gamma^*(i, wa, q)$ is defined to be $\exists z: \Gamma^*(i, w, z) \land \Gamma(z, a, q)$, and $\Gamma(z, a, q)$ is defined to be $\exists r: \exists t: \Delta^*(z, \lambda, r) \land \Delta(r, a, t) \land \Delta^*(t, \lambda, q)$.
- For our base case we compute both $\Delta^*(i, a, q)$ and $\Gamma^*(i, a, q)$ and find them equal.
- For the inductive case we assume that Δ*(i, w, q) ↔ Γ*(i, w, q) and use the definitions above to prove that Δ*(i, wa, r) ↔ Γ*(i, wa, r).

The Case of Empty Strings

- If λ ∉ L(M), the final state sets F_M and F_N are the same, so we know from the Lemma that every *nonempty* string is in L(M) if and only if it is in L(N). All we need to do, then, is prove that λ is not in L(N). Since N has no λ-moves, we just need to show that i is not a final state. But if i *were* a final state, λ would be in L(M), and it isn't. So in this case L(M) = L(N).
- Now suppose that $\lambda \in L(M)$, so that by our last step $F_N = F_M \cup \{i\}$. It's clear that λ is in L(N), which is good because it is in L(M).
- Now consider any non-empty string w. If $w \in L(M)$, then $\Delta^*(i, w, f)$ for some $f \in F_M$. By the Lemma, $\Gamma^*(i, w, f)$ is also true, and since $f \in F_N$ as well, $w \in L(N)$. Finally, suppose that $w \in L(N)$, so that $\Gamma^*(i, w, f)$ for some $f \in F_N$. By the Lemma, $\Delta^*(i, w, f)$ as well. If $f \in F_M$, this tells us that $w \in L(N)$. But what if f = i? Since $\lambda \in L(M)$, we have $\Delta^*(i, \lambda, g)$ for some state $g \in F_M$. From $\Delta^*(i, w, i)$ and $\Delta^*(i, \lambda, g)$ we can derive $\Delta^*(i, w, g)$, and thus $w \in L(M)$ here as well.