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Review: Kleene’s Theorem Overview

• Our current project is to prove Kleene’s Theorem, which says that a language 
has a regular expression if and only if it has a DFA.  After yesterday’s lecture, 
we know that a language has a DFA if and only if it has an ordinary NFA, with 
no λ-moves.

• But when we convert regular expressions to machines, it will be much easier 
to have λ-moves available to us.  To get away with this, we need to be able to 
convert a λ-NFA to an equivalent ordinary NFA.  That is today’s task.

• In one sense this construction is not costly -- the ordinary NFA we produce 
has the same number of states as the λ-NFA.  But it is technically the most 
complicated construction in the Kleene’s Theorem proof, and it will involve a 
fair number of inductive proofs to prove the construction correct.



The Construction

• Assume that we have a λ-NFA M, and we want to make an equivalent 
ordinary NFA N.  M and N will have the same state set, start state, and input 
alphabet.  Furthermore, if λ ∉ L(M), they also have the same final state set.

• The construction has three parts.  We consider the transitions in two groups, 
the letter moves and the λ-moves.

• We first add λ-moves to M until they are transitively closed, meaning that 
any λ-path has an equivalent λ-move.

• We then make the letter moves of N by finding all paths of M that read exactly 
one letter.  We can find these by taking all three-step paths of a λ-move, a 
letter move, and a λ-move.  (We ignore multiple copies of the same move.)

• If λ ∈ L(M), we add the start state i to the final state set of N.



A Three-State Example

• Define a λ-NFA with state set {p, q, r}, start state p, final state set {q}, input 
alphabet {a, b}, and ∆ = {(p, a, q), (q, λ, r), (r, λ, p), (r, b, r)}.

• There are two letter moves and two λ-moves.  For the transitive closure we 
must add one more move (q, λ, p).

• The letter move (p, a, q) gives us a letter move from any state with a λ-move 
to p, to any state with a λ-move from q.  This gives us all nine possible a-
moves, since we can get from anywhere to p and from q to anywhere on λ.

• The letter move (r, b, r) gives us letter moves from either q or r to either r or p.  
There are four such b-moves, so the ordinary NFA has 13 letter moves in all.

• Since λ ∉ L(M), we don’t need to alter the final state set of the ordinary NFA.



Finishing the Example

• Let’s form a DFA from this NFA.  The start state of the DFA is {p}.  We 
compute δ({p}, a) = {p, q, r} (and in fact δ takes any nonempty set and a to {p, 
q, r}), and δ({p}, b) = ∅.  We then compute δ({p, q, r}, b) = {p, r} and δ({p, r}) = 
{p, r}.  We have completed the Subset Construction with only four of the 
possible eight states being reachable.

• This DFA is also the minimal DFA.  We could carry out the construction, but it 
is perhaps easier just to show that the three non-final states are pairwise 
distinguishable.  (Of course the single final state, {p, q, r}, is in a class by 
itself.)  The string a distinguishes either {p} or {p, r} from ∅, and the string b 
distinguishes {p} and {p, r} from each other.



Validity of the Construction

• Let’s now assume that we have carried out this construction on a λ-NFA M to 
produce an ordinary NFA N -- we would like to prove that L(M) = L(N).

• We would like it to be true that for any string w, the set of states q such that 
∆M*(i, w, q) is exactly the set of states r such that ∆N*(i, w, r).  But we can’t do 
this for the empty string, because there might be more than one state of M 
reachable on λ, but in an ordinary NFA the only λ-path from i goes to i itself.  
This is why we altered the final state set of N.

• We will thus have a Lemma that these two sets are equal for any nonempty 
string, and we will prove this by induction on strings.

• We then have to account for empty strings, and make sure as well that our 
change to the final state set does not affect the membership of any nonempty 
strings.



The Main Lemma

• To save subscripts, we will refer to the relations for M as ∆ and ∆*, and those for 
N as Γ and Γ*.  We are proving ∀w: (w ≠ λ) → [∀q: ∆*(i, w, q) ↔ Γ*(i, w, q)].

• Remember that ∆* with middle term λ is defined in terms of λ-paths, and that 
∆*(i, wa, q) is defined to be ∃r:∃s:∃t: ∆*(i, w, r) ∧ ∆*(r, λ, s) ∧ ∆(s, a, t) ∧ ∆*(t, λ, q).

• Γ(s, λ, t) means just s = t, and Γ*(i, wa, q) is defined to be ∃z: Γ*(i, w, z) ∧ Γ(z, a, 
q), and Γ(z, a, q) is defined to be ∃r:∃t: ∆*(z, λ, r) ∧ ∆(r, a, t) ∧ ∆*(t, λ, q).

• For our base case we compute both ∆*(i, a, q) and Γ*(i, a, q) and find them equal.

• For the inductive case we assume that ∆*(i, w, q) ↔ Γ*(i, w, q) and use the 
definitions above to prove that ∆*(i, wa, r) ↔ Γ*(i, wa, r).



The Case of Empty Strings

• If λ ∉ L(M), the final state sets FM and FN are the same, so we know from the 
Lemma that every nonempty string is in L(M) if and only if it is in L(N).  All we 
need to do, then, is prove that λ is not in L(N).  Since N has no λ-moves, we 
just need to show that i is not a final state.  But if i were a final state, λ would 
be in L(M), and it isn’t.  So in this case L(M) = L(N).

• Now suppose that λ ∈ L(M), so that by our last step FN = FM ∪ {i}.  It’s clear 
that λ is in L(N), which is good because it is in L(M).  

• Now consider any non-empty string w.  If w ∈ L(M), then ∆*(i, w, f) for some f ∈ 
FM.  By the Lemma, Γ*(i, w, f) is also true, and since f ∈ FN as well, w ∈ L(N).  
Finally, suppose that w ∈ L(N), so that Γ*(i, w, f) for some f ∈ FN.  By the 
Lemma, ∆*(i, w, f) as well.  If f ∈ FM, this tells us that w ∈ L(N).  But what if f = 
i?  Since λ ∈ L(M), we have ∆*(i, λ, g) for some state g ∈ FM.  From ∆*(i, w, i) 
and ∆*(i, λ, g) we can derive ∆*(i, w, g), and thus w ∈ L(M) here as well.


