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Regular Expressions

• We’re now entering the final segment of the course, dealing with regular 
expressions and finite-state machines.  A regular expression is a way to 
denote a language (a subset of Σ* for some finite alphabet Σ).  A finite-state 
machine is a particular kind of computer that reads a string in Σ* and gives a 
boolean answer.  Thus the machine decides some language.

• Our major result will be Kleene’s Theorem, which says that a language is 
denoted by a regular expression (is a regular language) if and only if it is 
decided by a finite-state machine.  We’ll learn algorithms to go from an 
expression to an equivalent machine, and vice versa.

• Regular expressions, with slightly different notation, occur in programming 
languages and operating systems such as Unix.  The algorithm we will learn 
to build a machine from an expression is used in these situations.



The Formal Inductive Definition

• Fix an alphabet Σ.  A regular expression over Σ is a string over the alphabet 
Σ ∪ {∅, +, ⋅, *, (, )} that can be built by the rules below.  Each regular 
expression R denotes a language L(R), also determined by the rules below.

• “∅” is a regular expression and denotes the empty set.  If a is any letter in Σ, 
then “a” is a regular expression and denotes the language {a}.

• If R and S are two regular expressions denoting languages L(R) and L(S), then 
“R⋅S” (often written “RS”) is a regular expression denoting the concatenation 
L(R)L(S), and “R+S” is a regular expression denoting the union L(R) ∪ L(S).

• If R is a regular expression denoting the language L(R), then “R*” is a regular 
expression denoting the Kleene star of L(R), which is written L(R)*.

• Nothing else is a regular expression.



The Kleene Star Operation

• If A is any language, the Kleene star of A, written A*, is the set of all strings 
that can be written as the concatenation of zero or more strings from A.

• If A = ∅, A* = {λ} because we can only have a concatenation of zero strings 
from A.  If A = {a}, then A* = {λ, a, aa, aaa, aaaa,...}, the set of all strings of a’s.

• If A = Σ, then A* is just Σ*, so the star notation we have been using for “Σ*” is 
just this same Kleene star operation.  A string over Σ is just the concatenation 
of zero or more letters from Σ.

• In general A* is the union of the languages A0, A1, A2, A3,... where A0 = {λ}, A1 

= A, A2 = AA, A3 = AAA, and so on.  (Note that some of the laws of exponents 
still work, like AiAj = Ai+j and (Ai)j = Aij.)



Finite Languages

• The regular expression “aba” denotes the concatenation {a}{b}{a} = {aba}, by 
the definition of concatenation of languages.  Thus any language consisting 
of a single non-empty string has a regular expression, which is (up to a type 
cast) itself.  The language {λ}, as we just saw, can be written “∅*”.

• If I have any finite language, I can denote it by a regular expression, as the 
union of the one-string languages for each of the strings in it.  For example, 
the finite language {λ, aba, abbb, b} is denoted by the regular expression “∅* 
+ aba + abbb + b”.  (Note that “+” is not the Java concatenation operator!)

• A regular expression that never uses the star operator must denote a finite set 
of non-empty strings.  (We can prove this fact using induction!)  If we use the 
star operator on any language that contains a non-empty string, the result is 
an infinite language, such as (aa)* = {λ, aa, aaaa, aaaaaa,...}.



The Language (a + ab)*

• Here is a more interesting regular language, denoted by the regular 
expression “(a + ab)*.  (Note that the parentheses are important -- “a + ab*”  
and “a + (ab)*” denote quite different languages.)  The strings in (a + ab)* are 
exactly those strings that can be made by concatenating zero or more strings, 
each of which is equal to either a or ab.

• We can systematically list (a + ab)* by listing (a + ab)i in turn for each natural i. 
We get (a + ab)0 = {λ}, (a + ab)1 = {a, ab}, (a + ab)2 = {aa, aab, aba, abab}, (a + 
ab)3 = (aaa, aaab, aaba, aabab, abaa, abaab, ababa, ababab}, and so forth.

• How can we tell whether a given string of a’s and b’s is in (a + ab)*?  If it ends 
in a, we know that the last string used in the concatenation was “a”, and if it 
ends in b, the last string used was “ab”.  So we can delete a’s and ab’s from 
the right as long as we can, and if we produce λ then the string was in the 
language.  It turns out that (a + ab)* is the set of strings that don’t begin with 
b and never have two b’s in a row.  (How would you prove this assertion?)



Logically Describable Languages

• We can say “the first letter is not b and there are never two b’s in a row” in the 
predicate calculus.  One way to do it is to have variables that range over 
positions in the string.  Our atomic predicates are “Ca(x)” (“position x contains 
an a”, “Cb(x)” (“position x contains a b”), “x = y” (“x and y are the same 
position”), and “x < y” (“x is to the left of y”).

• So we can say that the first letter is not b, “¬∃x: Cb(x) ⋀ ∀y: x ≤ y”, and that 
there are never two b’s in a row, “¬∃x: ∃y: Cb(x) ⋀ Cb(y) ⋀ (x < y) ⋀ ∀z: (z ≤ x) ⋁ 
(z ≥ y)”.  One way to say both things at once is “∀x: Cb(x) → ∃y: Pred(x, y) ⋀ 
Ca(y)”, where “Pred(x, y)” abbreviates “(x < y) ⋀ ∀z: (z ≤ x) ⋁ (z ≥ y)”.

• In the honors section of CMPSCI 401, we have proved that a language is 
logically describable in this way if and only if it has a certain kind of regular 
expression, and that (aa)* is not logically describable.



Languages From Number Theory

•  We can easily make a regular expression for the set of even-length strings of 
a’s, “(aa)*”, or the odd-length strings of a’s, “(aa)*a”, or the set of strings of a’s 
whose length is congruent to 3 modulo 7, “a3(a7)*”, or the set of strings whose 
length is congruent to 1, 2, or 5 modulo 6, “(a + a2 + a5)(a6)*”.

• What about the set of strings over {a,b} that have an even number of a’s?  A 
good first guess is that such a string is a concatenation of zero or more strings, 
each of which has exactly two a’s.   This would be the language (b*ab*ab*)*.

• But this isn’t exactly right, because “bb”, for example, has 0 a’s and 0 is even. 
A correct regular expression for this language is (b + ab*a)* -- we can divide 
any such string into pieces which either have exactly two a’s (with some 
number of b’s between) or are just b’s themselves.

• It’s harder to get a number of a’s congruent to 3 mod 7, or the strings with an 
even number of a’s and an even number of b’s, but both are possible.


