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Uniform-Cost and A* Search

• The All-Pairs and Single-Source Shortest Path Problems

• Priority Queues

• The Uniform-Cost Search Algorithm

• Proving Uniform-Cost Search Correct

• Using a Heuristic to Improve Search

• The A* Search Algorithm

• Examples of A* Heuristics



Shortest Path Problems

• Today we look at the problem of finding shortest paths in a labelled graph.

• Let G be a graph (directed or undirected) where every edge is labelled with a 
non-negative cost.  The simplest example is where nodes represent places 
and edge labels represent distances.  Every path in the graph has its total 
cost, which is the sum of the labels of the edges on it.

• We could write down all the edge costs in a single-step distance matrix, 
where the entry in row u and column v is 0 if u = v, the edge cost if (u, v) is an 
edge, and infinity otherwise.  The all pairs shortest path problem is to take 
this matrix and produce the best-path distance matrix, where the (u, v) entry 
is the length of the shortest path from u to v, or infinity if there is no path.

• This can be solved with the right sort of matrix multiplications, as you may 
see in CMPSCI 311.  But a matrix multiplication takes O(n3) steps, which is 
prohibitively bad if n is, say, 106.



The Single-Source Shortest Path Problem

• A GPS navigation program, for example, is usually asked to find the best path 
from u to v.  It turns out that the simplest algorithm to solve this problem also 
gives the best path from u to all other vertices (or at least those that are closer 
to u than v is).  We call this the single-source shortest path problem.

• Our algorithm will be a variant of the generic search algorithm for directed 
graphs.  Since we will be able to recognize previously seen nodes, it will 
process each vertex once and each edge once.  Its running time will be O(e), 
where e is the number of edges.  Most graphs on which you would run this 
algorithm are sparse, meaning that they have many fewer than the O(n2) 
edges of a complete graph.  (Most nodes have only a few neighbors.)  An O(e) 
running time is thus much better than anything that deals with all O(n2) entries 
of a matrix.  

• Our algorithm will also use only O(n) space, as opposed to O(n2) for a matrix.



Priority Queues

• For DFS we kept the open list as a stack, and for BFS we kept it as a queue.  
The simple idea for our new algorithm is to keep it as a priority queue.

• In a priority queue, each item stored has a priority, and the basic operations 
are to insert a new item and to remove the item with minimum priority.  (We 
choose to refer to the item we want most as “minimum” priority.)

• In  CMPSCI 187 we saw how to implement a priority queue with a heap, so 
that with n elements in the queue we could carry out either insertions or 
removals in O(log n) time, maintaining the properties of the queue.

• In Java the priority can be given by the compareTo method of the item’s 
class, or by a separate Comparator object.  In our algorithm the priority of a 
node will be its best-path distance from the source node.



The Uniform-Cost Search Algorithm

• Our uniform-cost search algorithm is simply the generic search where the 
open list is kept as a priority queue that returns the node that is closest to the 
start node.

• We begin with the start node s in the queue.  We take s out, look at all the 
nodes that have edges from the start node, and insert the endpoints of those 
edges into the queue, marked with the length of those edges.

• In general when we take a node x off the queue, marked with its distance 
from the start, then (assuming it is not the goal) we look at its neighbors, 
compute the distance from s through x to each neighbor, and insert those 
neighbors into the queue with those distances.  There may be multiple entries 
in the queue for the same node -- if so we ignore all but the one closest to s.

• When the goal node g comes off the queue, we declare victory and report the 
distance from s to g from the priority of g in the queue.



Proving Uniform-Cost Search Correct
• From our results for general search, we know that we will terminate and report 

victory if and only if a path to the goal node exists.  The only question is 
whether the distance we find is really the minimum distance possible.

• Here is the important invariant.  When any node x comes off the queue, its 
priority is the length of the shortest path from s to x.  We prove this by strong 
induction on the number of nodes that have come off the queue -- P(n) will be 
the statement “the distance for the n’th node off the queue is correct”.

• For the base case of n = 1, the first node off is s with priority 0, and 0 is the 
correct distance from s to s.

• Now assume Q(n), that all the nodes already off the queue have the correct 
distance, and we will prove P(n+1), that the next node x’s distance is also 
correct.   



Completing the Correctness Proof

• Look at the priority of x when it comes off the queue.  When x was put in the 
queue, it was given a priority which was the length of a path from s to some 
node y and by the edge (y, x) to x.  The node y has now come off the queue, so 
by our assumption its priority represents the length of the best path from s to y.  

• So we have the best path that goes through y to x.  Could there be another 
shorter path from s to x that does not go through y?  Suppose there is, and 
that its last node before x is z.  The distance from s to z is smaller than the 
priority of x, so z must have come off the queue already and be marked with its 
correct distance (by the assumption).

• But when z came off, an entry was put into the queue for each of its edges, 
including the edge (z, x).  This couldn’t have happened, though, because that 
entry would have lower priority than our entry for x, and x would already have 
come off the queue.  So we do in fact have the best path through any node.



Using a Heuristic to Improve Search

• The problem with uniform-cost search is that it searches all nodes that are 
closer to the start node than our goal node.  If we have some extra 
information, we can avoid doing this.  In a geographical search, you would 
not look at driving routes from Amherst to Albany that went through Boston.

• In the case of driving routes, we know that the driving distance from x to y 
cannot be shorter than the straight-line (“as the crow flies”) distance, though 
it could be much longer.  Such a lower bound on the actual distance gives us 
a heuristic, a piece of information that helps guide our search although it 
does not give us the answer.

• We will still check all paths that have any hope of leading to the actual 
shortest one.  But if an edge takes us far away from the goal according to the 
heuristic, we will delay taking that entry out of the queue until or unless we 
find that there is nothing better.



The A* Search Algorithm

• We assume that we have a heuristic function h such that for any node x, h(x) 
satisfies the admissibility rule 0 ≤ h(x) ≤ d(x, g).  We also have the technical 
requirement that h be consistent, meaning that if there is an edge from u to v 
with cost c(u, v), then h(u) ≤ h(v) + c(u, v).

• The A* search algorithm works exactly like uniform-cost search except for 
the priority measure in the priority queue.  To process the edge (x, y), in the 
uniform-cost search we let the priority be d(s, x) + c(x, y), the distance from s 
on the best path to x and then on the edge to y.  Now our priority is d(s, x) + 
c(x, y) + h(y), which is our lower bound on the distance from s through x and y 
to g, given by the heuristic’s lower bound on d(y, g).

• We still mark each node x coming off the queue with d(s, x), and essentially 
the same argument shows that this d(s, x) value is the correct one.  The 
priority in the queue  can never be greater than the true distance d(s, g).



Examples of A* Searches

• The smallest possible admissible heuristic is the function that is always zero.  
In this case A* search becomes exactly the same as uniform-cost search.

• If the heuristic is as large as possible, so that h(x) = d(x, g), the A* search only 
looks at nodes that are on the shortest path (or a shortest path, if there is a 
tie).  This is of course the best possible case for finding the best path quickly.

• In the geographical setting with crow-flies distance as the heuristic, how 
much the A* search saves depends on how well the air distances 
approximate the highway distances.  You would expect, for example, that the 
savings would be greater in flat areas than in mountainous ones.

• Whether we can benefit from A* in other circumstances depends again on 
how accurate the heuristic is as an estimate of the true distance.  It helps by 
pruning the tree of possible paths, eliminating unprofitable branches.



The 15 Puzzle

• The 15-puzzle is a 4 × 4 grid of pieces with one 
missing, and the goal is to put them in a certain 
arrangement by repeatedly sliding a piece into the 
hole. 

• We can imagine a graph where nodes are positions 
and edges represent legal moves. 

• In order to move from a given position to the goal, 
each piece must move at least the Manhattan 
distance from its current position to its goal position. 
The sum of all these Manhattan distances gives us 
an admissible, consistent heuristic for the actual 
minimum number of moves to reach the goal.  So an 
A* search will be faster than a uniform-cost search.

Figure from 
en.wikipedia.org
“Fifteen puzzle”


