
CMPSCI 250: Introduction to Computation

Lecture #25: Depth-First and Breadth-First Search on Graphs
David Mix Barrington
28 March 2012

Depth-First and Breadth-First Search on Graphs

• Storing the Entire Search Space

• The DFS Tree of a Undirected Graph

• The DFS Tree of a Directed Graph

• Four Kinds of Edges

• The BFS Tree of a Undirected Graph

• The BFS Tree of a Directed Graph

Storing the Entire Search Space

• In CMPSCI 311 you’ll spend considerable time on search problems where the
entire graph is given to you, usually as an adjacency list where for each node
we have a list of the edges out of it.

• Given two nodes s and t in the graph, we can ask whether there is a path
from s to t, how long the shortest path from s to t might be (measured by
number of edges or measured by the total cost of the edges), or whether s
and t remain connected if certain edges are deleted.

• With the whole graph stored (or just with a closed list) we avoid processing
the same node twice.

• Both DFS and BFS on graphs will allow us to create a tree from the graph,
which will allow us to address these problems more easily.

The DFS Tree of an Undirected Graph

• Recall that our DFS algorithm places nodes onto a stack when they are
discovered, and processes all their edges when they are taken off the stack.

• Our DFS tree will have a tree edge from s to t if we encounter t for the first
time while we are processing s, that is, if we discover t through its edge from
s. The tree edges form a tree that gives a path from the start node to each
node that is reachable from it.

• If we defined the DFS recursively, the DFS tree would be essentially the call
tree, because if (s, t) were a tree edge we would make the recursive call with
parameter t in the course of processing the call with parameter s.

• A DFS of an undirected graph searches the entire connected component of
the start node. What can we tell about the edges that aren’t tree edges?

Tree Edges and Back Edges

• Let G be a connected undirected graph and let T be its DFS tree. If G were a
graph-theoretic tree, T and G would be the same graph (more precisely, T
would be the rooted tree made from G with the start node as root).

• But if while processing node s, we find an edge to a node t that is not new,
that edge does not go into T. (We’ll ignore the reverse directions of tree
edges.) Note that the processing of t must still be going on at this point,
because we don’t finish processing t until we’ve finished all the nodes
reachable from it, including s. So t must be an ancestor of s in the tree, and
the edge (s, t) is thus called a back edge.

• We’ll see an example on the board where the undirected graph G becomes a
rooted tree T together with some back edges.

• An articulation point is a node whose removal disconnects the graph. Can
you tell what condition on the tree and back edges makes t such a point?

The DFS Tree of a Directed Graph

• When we make a DFS of a directed graph, we still reach every node that is
reachable from the start node. But it’s no longer guaranteed that any or all of
those nodes have paths back to the start point -- we no longer have a
connected component to search.

• On HW#6 you’ll work out how to use the DFS algorithm to find the strongly
connected components of a directed graph -- the equivalence classes of
the equivalence relation P(x, y) ⋀ P(y, x). If there is a back edge from a node t
to an ancestor u, then all the nodes on the tree path from u down to t are in
the same strongly connected component because they lie on a directed
cycle.

• We can no longer guarantee that all the edges are either tree edges or back
edges -- what are the other possibilities?

Four Kinds of Edges

• Let (u, v) be an arbitrary edge in a directed graph G. In what different ways
could (u, v) be encountered in a DFS of G?

• If we find u before v and first find v through the edge (u, v), it is a tree edge.

• If we find u before v, but find v through one of its siblings before we look at
the edge (u, v), then (u, v) becomes a forward edge from u to a descendant.

• If we find v before u, and find u while we are still processing v, then the edge
(u, v) becomes a back edge just as in the undirected case.

• If we find v before u and finish v before finding u (because there is no path
from v to u), then (u, v) becomes a cross edge.

The BFS Tree of an Undirected Graph

• A breadth-first search gives rise to tree edges in the same way -- (u, v) is a
tree edge if we encounter v during the processing of u, and put v on the
queue. The BFS tree is made up of all the tree edges, and is a rooted tree
giving a shortest path (in number of edges) from the start node to each edge.
(If there are multiple shortest paths, the algorithm will choose one as the tree
path.)

• If u is at level k of the tree, and (u, v) is a non-tree edge, we know that v has
already been put on the queue before the edge is seen. If it is still on the
queue, it must be also at level k. If it has been finished, it must be at level
k-1, because otherwise (in an undirected graph) we would have missed a
shorter path from the start node to u by way of v.

• An undirected graph is bipartite if and only if we never get an edge from one
node to another at the same level. (This follows from the theorem that an
undirected graph is bipartite if and only if it has no odd-length cycles.)

The BFS Tree of a Directed Graph

• In a BFS of a directed graph, the BFS tree will arrange the nodes into levels,
based on their shortest-path distance from the start node (where again
“shortest” means “fewest edges”).

• If u is at level k and we find v for the first time while processing u, then (u, v)
will be a tree edge and v will be at level k + 1.

• But if v has already been seen, it might be at any existing level of the tree
from 0 to k or even k + 1, or might even not be in the tree at all! Remember
that if a DFS or BFS finishes without reaching all the nodes, we start a new
tree at a new start point. The node v might be in an earlier tree, which didn’t
contain a path to u, but still have an edge from u.

