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Induction for Problem Solving

• The L-Shaped Tile Problem

• Recursively Tiling a Chessboard

• Cutting Pizzas

• The Pizza-Cutting Theorem 

• Cutting a Block of Cheese With a Katana

• The Speed of the Euclidean Algorithm



The L-Shaped Tile Problem
• Samuel Golomb initiated the study of generalized dominos called 

polyominos.  An ordinary domino is made from two connected squares, and 
there is basically only one way to do it.  A tromino is made from three 
connected squares, and there are two different ones, I-shaped and L-shaped.  
There are five kinds of tetrominos and twelve kinds of pentominos (six of 
which are shown twice below, in two reflective forms).

• Golomb posed the question of what kinds of figures can be tiled by various 
kinds of polyominos.  In particular, can an 8 × 8 chessboard be tiled by L-
shaped trominos?  (No, because 64 % 3 ≠ 0.)  What about an 8 × 8 board 
with one square missing?

Figures from Wikipedia articles “Tromino”, “Tetromino”, and “Pentomino”



Recursively Tiling a Chessboard

• In the figure below, an 8 × 8 board with one (black) square missing has been 
tiled by 21 L-shaped trominos.  How did we do it, and can we always do it?

• We do it with a recursive algorithm that provides an inductive proof that any 
2n × 2n board, with any one square missing, can be tiled.  (The bold-faced 
statement will be the P(n) of our inductive proof.)  The base case of P(0) says 
that any 1 × 1 board, with any one square missing, can be tiled.  (Use 0 tiles!)

• The key step of the recursive algorithm is to reduce a 2n+1 × 2n+1 problem to 
four 2n × 2n problems.  We do this by placing one tile (the orange one in the 
figure) to take one square from each quarter of the board,                                  
except for the quarter that is already missing a square.  Then                         
we recursive tile each of the quarters -- in this example by                                   
placing the green tile to make 2 × 2 boards with one square                                 
missing -- these are covered by the red and blue tiles.

Figure from math.hmc.edu
“Math Fun Facts”



Cutting Pizzas

• Our next problem is to determine the maximum number of pieces into which 
we can divide a circular pizza, using only straight cuts in the plane of the pizza.

• With no cuts we have one piece, with one cut we can make two, and with two 
cuts we can make four.  We can’t ever do better than doubling the number of 
pieces, because the pieces (by induction) are all convex and a single straight 
cut can divide a convex piece into at most two subpieces.

• This leaves the possibility of getting eight pieces with three cuts, but that 
doesn’t seem to be possible.  You can get six by having all three cuts go 
through a single point, or seven by having then almost do that but leave a 
triangle.  Here are a cut into 11 pieces with four cuts, and 16 with five cuts:

Diagrams from 
murderousmaths.co.uk



The Pizza-Cutting Theorem

• Theorem: The maximum possible number of pieces with n such cuts is 
exactly (n2 + n + 2)/2.  We prove this theorem by induction on n.  The base 
case says that we have (02 + 0 + 2)/2 = 1 piece with no cuts, which is true.

• Suppose that we have (n2 + n + 2)/2 pieces with n cuts, and we want to make 
an n+1’st cut.  By geometry, two straight lines meet in at most one point, so 
the new cut can cross each old cut at most once.  This means that the new 
cut passes through at most n + 1 old pieces.  Those pieces are divided into 
two and the others are not.  So after n + 1 cuts we have at most (n2 + n + 2)/2 
+ (n + 1) = (n2 + 3n + 4)/2 = (n + 1)2 + (n + 1) + 2, at most the number we want.

• We have to show that this number is always achievable.  If the n + 1 cuts are 
in general position, meaning that every two cuts meet and that three or more 
cuts never meet in the same place, we achieve our bound as long as the 
pizza is big enough to include all the intersection points.



Cutting a Block of Cheese With a Katana

• A similar analysis works in three dimensions.  With a katana (Japanese 
samurai’s sword), we can make straight cuts through a convex block of 
cheese in any plane we like.  (We are not allowed to move the pieces until all 
cuts have been made.)  The first three cuts can be mutually perpendicular, 
giving us 1 piece with no cuts, 2 pieces with 1, 4 pieces with 2, and 8 with 3.

• The fourth cut is hard to visualize, but if your cut goes near but not through 
the existing triple intersection point, you cut seven of the eight old pieces and 
get a new total of 15.  With a fifth cut, you can get 26 pieces, a number rather 
hard to figure out by visualizing (but see a way that a UMass alum got the 
number, at least, at www.gweep.net/~sskoog/block_of_cheese_problem.txt).

• The key to the solution is how many new pieces we add with each cut.  From 
the above, the sequence is 1, 2, 4, 7, 11,... which we might recognize as the 
number of pieces of pizza in the previous problem.  Why is this?



The Cheese Cutting Theorem

• Theorem: The maximum number of cheese pieces is exactly (n3 + 5n + 6)/6.

• Where did this polynomial come from?  It is the only function of the form f(n) = 
an3 + bn2 + cn + d that satisfies f(0) = 1, f(1) = 2, f(2) = 4, and f(3) = 8.  Since 
the difference function is a quadratic, we expect this to be a cubic.

• The n+1’st katana cut forms a new plane within the cheese, and the 
intersection of each of the old cuts is a straight line.  These n lines divide our 
new plane into at most (n2 + n + 2)/2 regions by the Pizza Cutting Theorem.  If 
we compute (n3 + 5n + 6)/6 + (n2 + n + 2)/2 we get (n3 + 3n2 + 8n + 12)/6  
which is exactly ((n + 1)3 + 5(n + 1) + 6)/6, the number we want as the 
conclusion of our inductive step.

• But if the cuts are in general position, and the block of cheese is large enough 
to include all the intersections, we achieve exactly this number.



The Speed of the Euclidean Algorithm
• We asserted that the Euclidean Algorithm can quickly test even very large 

numbers for relative primality.  For example, 2068 and 1259 give 809, 450, 359, 
91, 86, 5, 1, and 2068 and 1289 give 779, 510, 269, 241, 28, 17, 11, 6, 5, and 
1.  

• Consecutive Fibonacci numbers take a relatively long time, e.g., 233, 144, 89, 
55, 34, 21, 13, 8, 5, 3, 2, 1, but we know from last week’s discussion that F(n) is 
about (1.61)n, so that if x is a Fibonacci number we take about log1.61 x steps.

• Here we’ll show that if the two initial numbers are each at most 2n, the EA will 
terminate in at most 2n + 1 steps.  The base case of our induction says that if 
both numbers are at most 20 = 1, we need 2(0) + 1 = 1 step.  

• The inductive step uses the contrapositive method.  We start with a and b, and 
compute a = qb + c and b = rc + d, so a = (qr + 1)c + qd.  If c or d is greater 
than 2n, then a is greater than 2n+1.  So if a ≤ 2n+1, then c ≤ 2n.  By the IH we 
need at most 2n + 1 steps starting with c and d, so at most 2n + 3 total.


