
CMPSCI 250: Introduction to Computation

Lecture #2: Propositions and Boolean Operators
25 January 2012

Propositions and Boolean Operators

• What is a Proposition?

• Java Booleans

• Boolean Operators and Compound Propositions

• AND, OR, NOT, and XOR

• Implication and Equivalence

• Tautologies

What is a Proposition?

• A proposition is a statement that is either true or false.

• In mathematics we want to reason about statements like “x = 5” or “these
triangles are congruent” without knowing whether they are true or false. We
say things like “if x = 5, then x2 = 25” or “a natural number is the same thing
as a non-negative integer”.

• In computing we reason with assertions about a program, like “if this method
terminates, the value of i is positive”. Ultimately we’d like to say “if the input
is as specified, then the output is as specified”, meaning “the program is
correct”.

• What isn’t a proposition? Questions, commands, statements without meaning,
or paradoxes like “This statement is false”.

Java Booleans

• Java has a boolean primitive data type, and a boolean must have either
the value true or the value false.

• We use booleans in the conditions for if or while statements -- if we write
“if (x > 4) y = 5;”, then the statement y = 5 will be executed only if
the boolean value x > 4 evaluates to true.

• The operators ==, !=, >, >=, <, and <= create boolean values from values
of other types. We often write methods that return boolean values, or use
existing boolean methods like equals.

• You may think of a “proposition” as any statement that could in principle be
modeled by a boolean variable. Of course we will have propositions that talk
about physical or mathematical objects as well as data in a computer.

Boolean Operators and Compound Propositions

• A compound proposition is a proposition that is made up from other
propositions, called atomic propositions, using boolean operators.

• If I say “you must have MATH 132, and either CMPSCI 187 or ECE 242”, we
can define three atomic propositions and write this as a compound
proposition. If x is “you have MATH 132”, y is “you have CMPSCI 187”, and z
is “you have ECE 242”, then my statement can be rephrased as “x, and either
y or z”. Symbolically, we will write this as “x ∧ (y ∨ z)”.

• If x, y, and z are any three booleans, the truth of x ∧ (y ∨ z) depends on which
of x, y, and z are true. In Java, if x, y, and z are boolean variables, we can
write the expression x && (y || z), and this represents x ∧ (y ∨ z).

• The rules for working with booleans and boolean operators are called the
propositional calculus and we will start learning them now.

AND, OR, NOT, and XOR

• If x and y are any two propositions, their conjunction x ∧ y is the proposition
that is true if and only if both x and y are true. We read it “x and y”. The Java
operators & and && both compute the value of a conjunction -- we usually
use && which only evaluates the second argument if it is needed.

• The disjunction of x and y is written x ∨ y, read “x or y”, and is true if either x
or y is true, or both. In Java the disjunction is computed with | or ||.

• The negation of x is written ¬x, read “not x”, and is true when x is false and
false when x is true. In Java the negation operator is !.

• The exclusive or of x and y is written x ⊕ y, read “x exclusive or y” or “x or y,
but not both”, and is true if one of x and y is true and the other false. In Java
we can write x ^ y to compute the exclusive or of x and y.

Implication and Equivalence

• The last two boolean operator we will use are implication and equivalence.
These are important in mathematics because they express two relationships
between propositions that we frequently want to prove.

• The implication x → y is read “if x, then y” or “x implies y”. It is true if either x
is false or y is true. Equivalently, it is true unless x is true and y is false. This
may or may not correspond with your understanding of the English phrasing,
but we need to fix this interpretation as a rule.

• Normally in mathematics we want to make some assumptions and prove
that some consequences must be true if the assumptions are true. This is
an implication.

• In the book we have Bertrand Russell’s argument that with the assumption “0
= 1”, we can prove the proposition “I am Elvis Presley”.

Equivalence

• Two boolean values are equivalent if they are both true or both false. If x and
y are propositions, x ↔ y is the proposition that x and y are equivalent. We
can write this this in Java as x == y.

• We are often interested in the equivalence of two compound propositions with
the same atomic propositions. For example, “x → y” and “¬x ∨ y” are
equivalent. How do we know this? They are each true in three of the four
possible cases -- they are false only if x is true and y is false. They have the
same truth tables, as we will soon see.

• As in Java, we have rules for precedence of operations. Negation is first, then
the operators ∧, ∨, and ⊕, then the operators → and ↔. So we can write the
equivalence above as the single compound proposition (x → y) ↔ ¬x ∨ y.

Tautologies

• This compound proposition (x → y) ↔ ¬x ∨ y is true in all four possible
situations of truth values for x and y, so it is always true. We call such a
compound proposition a tautology. In the next lecture we will learn a
systematic method to show that a compound proposition is a tautology, by
checking all the possible combinations of values of its atomic propositions.

• Next week we will see how to use particular tautologies as rules, chaining
them together to verify larger tautologies without having to check all the
possible cases. If there are many atomic propositions, this may be the only
feasible way to verify the tautology.

• Our most common tasks with booleans in mathematics turn out to be
verifying that particular implications or equivalences are tautologies. Verifying
x → y means that if we assume x, we may conclude y. Verifying x ↔ y means
that x and y are in effect the same compound proposition.

