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Infinitely Many Primes

• There is one argument I want to squeeze in at least briefly, although its 
section (3.4) is not on the syllabus.  How do we know that there are always 
more prime numbers, no matter how high in the naturals we look?  We now 
know enough to prove this, as did the ancient Greeks.

• Let z be arbitrary -- we will prove that there exists a prime number greater 
than z.  The factorial of z, written “z!”, is the product of all the numbers from 
1 through z (so for example 7! = 1×2×3×4×5×6×7 = 5040).  

• Look at the number z! + 1.  It is not divisible by any number k in the range 
from 2 through z, because k must divide z! and thus z! + 1 ≡ 1 (mod k).

• But z! + 1 must have a prime factorization because every positive natural 
does.  It is either prime itself or is divisible by some smaller prime, and that 
prime cannot be less than or equal to z.  So we know that some prime greater 
than z must exist, though we haven’t explicitly computed it.



Reviewing Inverses and the Inverse Theorem

• We have been working with arithmetic where the “numbers” are congruence 
classes modulo m.  A class [x] (the set {n: n ≣ x}) has a multiplicative inverse 
if there is another class [y] such that [x][y] = [1], or xy ≣ 1 (mod m).

• The Inverse Theorem says that a number z has a multiplicative inverse 
modulo m if and only if z and m are relatively prime, meaning that gcd(z, m) 
= 1.  It’s fairly clear that if z and m have a common factor g > 1, then a 
multiplicative inverse for z modulo m is impossible.

• The Euclidean Algorithm is our method to compute gcd’s and thus test for 
relative primality.  The Extended Euclidean Algorithm takes z and m as 
inputs and uses the arithmetic from the Euclidean Algorithm to write each 
number that occurs as an integer linear combination of z and m.  If z and m 
are relatively prime, we compute numbers a and b such that az + bm = 1.  
Then a is an inverse of z modulo m and b is an inverse of m modulo z.



Systems of Congruences

• Modular arithmetic was invented to deal with periodic processes.  We’ve seen 
how to work with multiple congruences that have the same period -- for 
example, we know that if a ≡ b (mod m) and c ≡ d (mod m), then ab ≡ cd (mod 
m).

• But we sometimes have interacting periodic processes with different moduli.  
For example, days of the week have period 7.  Suppose you have to take a 
pill every five days.  How often do you take a pill on a Wednesday?  Every 35 
days, as it turns out.

• A mod-5 process and a mod-7 process interact to give a mod-35 process, 
and something similar happens whenever the moduli are relatively prime.  If 
two moduli are not relatively prime, the two congruences may not have any 
common solution -- consider x ≡ 1 (mod 4) and x ≡ 4 (mod 6). 



Examples of Congruence Systems

• Suppose we have around a thousand soldiers marching along the road and 
we would like to know exactly how many there are.  We tell them to line up in 
rows of 7 and determine how many are left over.  Then we do the same for 
rows of 8, then again for rows of 9.  The full form of the Chinese Remainder 
Theorem, which we will soon prove, says that we can use these three 
remainders to find the number of soldiers modulo 7×8×9 = 504.  It might say, 
for example, that the number is either 806 or 1310, and hopefully we can tell 
the difference between these two cases.

• The pseudoscientific (i.e. “wrong”) theory of biorhythms says that a person 
has three cycles started at birth, of 23, 28, and 33 days.  According to the 
same theorem, a person would be at the initial position of all three cycles 
again exactly 23×28×33 = 21252 days, or about 58.2 years, after birth.



The Simple (Two Modulus) Version

• How can we find a common solution to the two congruences x ≡ a (mod m) 
and x ≡ b (mod n)?  The Simple Version of the Chinese Remainder 
Theorem says that if m and n are relatively prime, this pair of congruences is 
equivalent to the single congruence x ≡ c (mod mn), where c is a number that 
we can calculate from a, b, m, and n.

• Note first that if x is a solution to the two congruences, so is any y that 
satisfies x ≡ y (mod mn).  This is because in this case y = x + kmn for some 
integer k, and when we divide y by m, for example, we get the remainder for x 
plus the remainder for kmn, and the latter is 0 because m divides kmn.

• We need to find a c that gives us a solution to the two congruences, and also 
show that any solution x to the two congruences must satisfy x ≡ c (mod mn).



Proving the Simple Version

• Since m and n are assumed to be relatively prime, the Inverse Algorithm gives 
us integers y and z such that ym + zn = 1.

• Our number c will be bym + azn.  Let’s verify that this works.  When we divide 
bym + azn by m, the first term gives remainder 0 and the second gives [azn] = 
[a][zn] = [a][1] = [a].  Dividing bym + azn by n, the first term gives [b][ym] = [b]
[1] = [b], and the second term gives 0.  A good way to think of this is that the 
original equation ym + zn = 1 tells us how to get a number whose remainders 
are 1 (mod m) and 1(mod n), and to get arbitrary a and b we can adjust either 
term without affecting the remainder for the other modulus.

• Let x be any solution to x ≡ a (mod m) and x ≡ b (mod n), and let d be x - c.  
Then d is divisible by both m and n.  Use the Euclidean Algorithm to find the 
gcd of d and mn (or -d and mn, if d is negative) -- call this q.  But q is a 
common multiple of m and n, and the least common multiple of two 
relatively prime numbers is their product.



The Full (Many Modulus) Version

• More generally, as in our examples, suppose we have several congruences x 
= a1 (mod m1), x = a2 (mod m2),... x = ak (mod mk), and that the moduli are 
pairwise relatively prime.  (This means that any two of them are relatively 
prime to each other.)  Then the Full Form of the Chinese Remainder 
Theorem says that this system of congruences is equivalent to a single 
congruence x ≡ c (mod M), where M is the product of the mi’s and c is a 
number that can be calculated from the ai’s and the mi’s.

• We can prove the Full Version from the Simple Version.  If k = 3, for example, 
we first use the Simple Version to find a c such that the first two congruences 
are equivalent to x ≡ c (mod m1m2).  Then we have two congruences, that and 
x ≡ a3 (mod m3), and we can use the Simple Version again to get a common 
solution to them.  (The pairwise relatively prime property guarantees that  
m1m2 will be relatively prime to m3.)  This clearly extends to larger k.  In the 
book, it is shown how we can calculate the single c directly.



Working With Really Big Numbers

• If I have some very very big integers, each too big to store in a single 
computer word, the Chinese Remainder Theorem gives me an alternate way 
to calculate them.  

• Say I want to multiply n of these numbers together.  I pick a bunch of different 
prime numbers, so many that their product is bigger than the product of my 
big numbers.  (We know that such primes exist -- a more sophisticated 
analysis shows that there are lots of primes that fit in a single word, so I can 
get to very very big numbers by multiplying them together.)  I then find the 
remainder of each big number modulo each prime.

• If I multiply together all the remainders for a given prime p, and take the result 
modulo p, I have my product’s remainder modulo p.  And this can be done 
with calculations on reasonably-sized numbers.  I can do this in parallel for 
each prime.  Then running the Chinese Remainder calculation once, I can get 
my product in the regular notation.


