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Introduction to Number Theory

• We’ve defined the natural numbers to be the non-negative integers {0, 1, 2, 
3,...}.  Number theory is the branch of mathematics that deals with the 
naturals.

• We’ll define properties of the naturals using quantifiers, starting from basic 
predicates like x = y, x ≤ y, x + y = z, and x ⋅ y = z.  We will give definitions of 
the naturals and these predicates and prove the properties from them.

• Because counting is a fundamental human activity, and the naturals are an 
abstraction of counting, number theory has a long history.  We’ll see results 
originally proved in ancient Greece and in medieval China.  But there are 
easily stated questions in number theory to which no one knows the answer.

• Remember that naturals, and integers in general, are different from ints.



An Application: Hashing With Open Addressing

• In CMPSCI 187 we studied hashing, where a large address space is mapped 
into a smaller space called a hash table.  The mapping from address space 
to hash table cannot be one-to-one, and we have a problem if it fails to be 
one-to-one on the address values that we actually use.  A collision is when 
two relevant addresses are mapped to the same hash address.

• One way of computing a hash address is to divide the original address by the 
size s of the hash table and let the remainder, in the range from 0 to s - 1, be 
the hash address.

• One way to deal with collisions, called open addressing, has us look at new 
hash addresses if the first hash address h is full -- we look at h + k, h + 2k, h 
+ 3k,... until we find an empty space in the table.

• We might not want k = 1.  Will we still eventually find an open space if one 
exists?



Do Incredibly Large Naturals Even Exist?

• Some questions of number theory involve ridiculously large naturals.  For 
example, the Goldbach Conjecture says that every even natural greater than 
2 is the sum of two prime numbers.  It is known that if this fails, it fails on a 
very large number (greater than 1018 according to Wikipedia).  One paper in 
theoretical computer science treats all input sizes up to exp*(20) (a tower of 
twenty two-to-the operations) as a special case.

• If naturals exist in order to count sets, what about naturals that are too big to 
denote any set of material objects in the universe?  Or numbers so big that no 
computer could ever name them?  We say in mathematics that given any 
property of naturals, either a natural with that property exists or it doesn’t.

• Logicians have shown that given any proof system for number theory, there 
must be statements that are true, but not provable in the system.  There is 
some question about what it means for an unprovable statement to be true.



Primes and Prime Factorization

• We’ll begin now with the foundations of number theory.  The first division, of 
one natural dividing another, was in Monday’s lecture.  We defined the 
division relation D so that D(x, y) means ∃z: x⋅z = y.

• A prime number is a natural, greater than 1, that is divided only by itself and 
1.  In symbols, we say P(x) ↔ (x > 1) ∧ ∀y: D(y, x) → (y = 1 ∨ y = x).  Numbers 
greater than 1 that are not prime are called composite -- a composite x can 
be written as y⋅z where both y and z are greater than 1.  By convention, we 
say that 0 and 1 are neither prime nor composite.

• A composite number can be factored, and its factors can also be factored if 
they are composite.  Operating recursively, we can write any positive natural 
as a product of prime numbers -- its prime factorization.  In today’s 
discussion we’ll practice doing this by hand.



The Sieve of Eratosthenes

• To test whether a natural is prime, we can use trial division, 
seeing whether it has any divisor between 1 and itself.  A 
useful trick to test n for primality is that if n has no divisors 
in the range from 2 through its square root, it is prime.

• The ancient Greeks developed a system to simultaneously 
test all the numbers in a given range for primality.  In the 
picture, we have listed all the numbers from 1 though 100.  
We identify 2 as prime and cross out all its multiples.  We do 
the same for 3, 5 and 7.  The next prime, 11, is bigger than 
the square root of 100, so we don’t need to check it.  25 of 
these 100 naturals are prime.  They get rarer as we go on.

• Note that after 2 and 3, every prime is one more or one less 
than a multiple of 6.
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Congruences and Congruence Classes

• We have one more major definition in number theory.  Recall that the parity 
relation P, where P(x, y) means that x and y are both odd or both even, is an 
equivalence relation.  We can write this using the Java % operation, in which 
x % y is the remainder when y is divided by x.  P(x, y) is true if and only if x 
% 2 == y % 2.  Equivalently, P(x, y) is true if 2 divides x - y (or else y - x, 
whichever is a natural).

• If P(x, y) is true we also say that x and y are congruent modulo 2.  In general 
x and y are congruent modulo k if x % k == y % k, or equivalently if k 
divides x - y or y - x.  For example, 3 and 17 are congruent modulo 7.

• Congruence modulo k is an equivalence relation, and we refer to the 
equivalence classes of this relation as the congruence classes modulo k. 
Periodic processes in the real world or in computing can be modeled with the 
system of modular arithmetic we will begin studying next week.


