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DIRECTIONS:

e Answer the problems on the exam pages.

e There are 6 problems on pages 2-11, some with multiple parts, for
100 total points plus 5 extra credit. Final scale will be determined
after the exam.

e Page 12 contains useful definitions and is given to you separately
— do not put answers on it!

e But, if you do write on the back of a page, you must explicitly add
a note on the front side stating that you are continuing on the back
page. Otherwise, we might not see your solution on Gradescope.

e No books, notes, calculators, or collaboration.

e In case of a numerical answer, an arithmetic expression like “217 —

4” need not be reduced to a single integer.

e Your answers must be LEGIBLE, and not cramped. Write only
short paragraphs with space between paragraphs
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Definitions for Questions 1-3: In this scenario, we have a set D = {b,c,,k,r} of exactly five
dogs (Blaze, Clover, Indie, Kiké, and Rhonda), and a set T' = {Curly, Fluffy, None, Straight }
of exactly four tail types.

The relation H from D to T', which is also a function, is defined by the predicate H(d,t)
meaning “dog d has tail type t”. The binary relation Y on D is defined by the predicate
Y (d, e) meaning “dog d is younger than dog e”. You are given that Y is a strict partial
order, meaning that it is antireflexive, antisymmetric, and transitive.

Question 1 (10): (Translations)

e (a, to symbols, 2 points) Statement I: If Clover has a Fluffy tail, then either Indie has
a Straight tail or Blaze has no tail, but not both.

(b, to English, 2 points) Statement II: H(c, F) V ~(H (i, S) — H(b,N))

(¢, to symbols, 2 points) Statement III: If it is not the case that both Indie has a
Straight tail and Clover has a Fluffy tail, then Clover has a Fluffy tail and it is not the
case that Blaze has no tail.

(d, to English, 2 points) Statement IV: Vd: ((d=r)VY(r,d)) A ((d=k)VY(d,k))

(e, to symbols, 2 points) Statement V: Any dog has a Fluffy tail if and only if it is
younger than Blaze, and any dog has a Straight tail if and only if Blaze is younger than
it.
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Question 2 (10): (Boolean Proof)

For this problem, please use the abbreviations p = H(c, F'), ¢ = H(i,S), and r = H(b, N).
Using either a truth table or a deductive sequence proof, prove that there is exactly one
setting of these three variables that satisfies Statements I, 11, and III.

Note that you must show both that your setting satisfies that statements, and that no other
setting does so. If you construct a correct truth table, you will prove both. If you use a
deductive sequence to that your setting is implied by the three statements, you must also
verify that your setting in fact does satisfy the three statements.

So that you may have correct inputs to the following problem, we will tell you that the correct
setting has p true, ¢ true, and r false.
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Question 3 (20) (Predicate Proof) :

For this proof, we ask you to determine two things:

e (a, 10) What is the age order of the five dogs?
e (b, 10) What is the tail type of each dog?

For part (a), number the dogs Dy, Dy, D3, Dy, and D5, with D; being the youngest dog and

Ds the oldest.

To show your results fill in the table below with, e.g., the entry below D; being the name of
the youngest dog and the entry below D5 the name of the oldest one.

Dl DQ D3 D4

Ds

Using quantifier rules on Statements I-V, and the given properties of H and Y, justify

the claims that Y(Dl, DQ), Y(DQ, D3), Y(Dg, D4), and Y(D4, D5)

e Justify your claim that Y (D1, D9):

e Justify your claim that Y (Dg, D3):

e Justify your claim that Y (Ds, Dy):

e Justify your claim that Y (Dy, Ds):




For part (b), find the tail type of each of the five dogs, justifying each choice by quantifier
rules. Indicate where, if anywhere, you use the given properties of H and Y.

The tail types you find should be shown in the following table, with entry (d,t) being the
value 1 if H(d,t) is true and 0 if H(d, t) is false. We start you off by filling in the three values
you already know from Question 2.

[ D\T|C|FIN|S|
b 0
1
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Question 4 (20): (Binary Relations on a Set) Parts (a) and (b) deal with two binary rela-
tions P and @, each from a set to itself. Part (a) is on this page, part (b) on the next.

(a, 10)

Let A ={a,b,c,d}. The relation P C A x A is a partial order.
It is known that (a,b) € P, (a,d) € P, (b,c) € P and (d,c) ¢ P.

(i) In the table given below, label all pairs that must be in P with a “v”” and all pairs
that cannot be in P with a “x.” For pairs that are neither, leave their entry blank. We
start you off by labeling the four known pairs with the appropriate “v” or x.

Justify your answers. That is, you must provide a brief explanation as to why each of
the pairs you marked “v’” are in P and those you marked “x” are not in P. Each pair
that you justify must be explicitly named as being justified.

Your explanations must reference the properties of P that are being used. They must also
be consistent. That is, if you somewhere use the fact that (z,y) ¢ P where (z,y) # (d, ¢),
then you must have already previously proven that (z,y) ¢ P.

(ii) How many partial orders P’ exist that satisfy (a,b) € P, (a,d) € P, (b,c) € P and
(d,c) ¢ P? Briefly explain how you know this. Draw a Hasse diagram illustrating each
such P’ that could exist.

(a,b) | (a,¢) | (a,d) | (bya) | (b,d) | (b,c) | (b,d) | (e,a) | (¢,b) | (c,c) | (¢,d) | (d,a) | (d,b) | (d,c)

v v v
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(b, 10) Let B = {a,b,c,d,e}. The relation @ C B x B is an equivalence relation.
It is known that (a,b) € Q, (a,c) € Q, (b,e) € Q and (e,d) € Q.

(i) In the table given below, label all pairs that must be in @ with a “v"” and all pairs
that cannot be in () with a “x.” For pairs that are neither, leave their entry blank. We
start you off by labeling the four known pairs with the appropriate “v” or x.

Justify your answers following the same rules that were given in part (a).

(ii) How many Equivalence Relations Q' exist that satisfy (a,b) € @, (a,¢) € Q, (b,e) € Q
and (e,d) ¢ Q7 Briefly explain how you know this. Write down the possible equivalence
relation(s) in partition form, that is, as a set of sets of items in B.

(a,a) | (a,b) | (a,c) | (a,d) | (a,e) (b,a) | (b,d) | (b,c) | (b,d) | (bye)
v v X
(c;a) | (¢,b) | (¢,0) | (¢,d) | (c,€) (d,a) | (d,b) | (d;c) | (d,d) | (d,e)

(e,a) | (e;b) | (e,¢) | (e,d) | (ee)
X
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Question 5 (20+5): (Number Theory)

e (a, 4) For each of (i) and (ii) below say whether m has a multiplicative inverse modulo
n. In each one, if the inverse exists, write down what it is. You do not need to show
your work. The number you write down should be between 0 and n — 1. If the inverse
does not exist, prove that it does not exist.

(i) m=5,n=34.

(i) m = 333, n = 336

e (b, 8) The naturals 67 and 30 are relatively prime.
Use the Extended GCD algorithm as taught in class to find integers a and b satisfying
the equation a - 67 + b - 30 = 1. Show all of your work.

After solving the problem, write your final solution here

a = . b:
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e (c, 4) Using the results from the previous part, determine both an inverse of 30 modulo

67 and an inverse of 67 modulo 30.
For full credit, your answers should each be the smallest natural numbers that are

inverses.
After solving the problem, write your final solutions here:

is an inverse of 67 modulo 30.
is an inverse of 30 modulo 67.

e (d, 4) You are now given that 2-101 — 3-67 = 1.
Using the technique taught in class, determine the smallest natural x that solves both
the congruences
x =3 (mod 67) and z =2 (mod 101).

Show all of your your work.
After solving the problem, write your final solution below:

The smallest natural satisfying both congruences is x =
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o (e, 5 extra credit)
There are a number of classic puzzles involving pirates on an island (usually also with a
monkey) that need to divide a hoard of coconuts. In this case, three pirates A, B, and
C, have n coconuts and have agreed to divide them equally in the morning. During the
night, each pirate secretly takes away what they think to be their share. Specifically,

— A first visits the hoard of n coconuts. She divides them into three equal piles of size
a, except there is one left over which she gives to the monkey. She hides a coconuts,
leaves 2a remaining, and gives one to the monkey, so n = 3a + 1.

— B now visits, and divides the remaining 2a coconuts into three equal piles of size

b, giving one left over to the monkey. He hides b coconuts, and leaves 2b, so that

2a = 3b+ 1.

C finds the remaining 2b coconuts, divides them into three piles of size ¢, giving one

to the monkey, and leaves 2¢, so that 2b = 3¢ + 1.

— In the morning, the remaining 2c¢ coconuts are divided equally into three piles,
without one for the monkey.

In fact, there are an infinite number of possible sizes n that fit this scenario. Your job is
to find one (write it below) and then prove that your solution for n is the smallest one
possible. (Hint: Modular arithmetic definitely comes into play, but there is no obvious
way to use the Chinese Remainder Theorem.)

The smallest natural satisfying the conditions is n =

10
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Question 6 (20): The following are ten true/false questions, with no explanation needed or
wanted, no partial credit for wrong answers, and no penalty for guessing.

After reading the questions, write the correct answer, either T (for true) or F (for false), in
the corresponding column.

@) M @ @] @@ O] @ W] O (

(a) Given the three premises (p A —x) — ¢, (pA—=(z = y)) = ¢, and (p Az Ay) — ¢, we
can conclude that p — ¢ is true.

(b) Let w and v be two non-empty strings over the alphabet {a,b}. If u is both a prefix
of v and a suffix of v, then v and v must be the same string, that is, u = v.

(c) Let A, B, C, and D each be finite non-empty sets. Then the statement Ax B C C'x D
is logically equivalent to the statement (A C C) A (B C D).

(d) Let X ={0,1} and Y = {a,b}. Then (b,0) € X x Y.

(e) Let P be a unary predicate on the set A, and assume the premise Vz : P(z). It may
be possible that the statement Jy : P(y) is false.

(f) Let R be a binary predicate on N, defined as {(a,b) : a> = b}. Then R is a function
from N to N, and is an injection (1-1 function), but it is not a surjection (onto function).

(g) Let a, b, and ¢ be distinct odd naturals, each greater than 1. Then the number
n = abc + 4 is not divisible by a, not divisible by b, and not divisible by c.

(h) A relation R C A x B is an injection (a one-to-one function) if and only if for every
x € A, there is exactly one element y € B such that (z,y) € R.

(i) For all naturals z, y, and z, 2%(y%z) = (x%y)%z, where “%” is the modular division
operation, as in Java or Python.

(j) Let p1,p2,...,pr and qi1,. .., ¢n each be prime numbers, not necessarily distinct. If
the two products pi1ps...pr and ¢ ... gy, are equal, then we know both that & = m and
that for each i with 1 <i <k, p; = 1.
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