NAME: \qquad

SPIRE ID:

COMPSCI 250
 Introduction to Computation
 Final Exam Fall 2023

D. A. M. Barrington and G. Parvini

12 December 2023

DIRECTIONS:

- Answer the problems on the exam pages.
- There are four problems on pages 2-9, some with multiple parts, for 125 total points plus 5 extra credit. Final scale will be determined after the exam.
- Page 10 contains useful definitions and is given to you separately - do not put answers on it!
- If you need extra space use the back of a page -both sides are scanned.
- If absolutely necessary, you may attach additional pages to be graded, but this is a big nuisance to us.
- No books, notes, calculators, or collaboration.
- Scrap paper during the exam may be used, if it starts out blank. Please transfer any answers to the exam pages.
- You may say "pass" for any question or lettered part of a question, except for the true/false and the extra credit questions, and receive 20% of the points.

1	$/ 35$
2	$/ 10$
3	$/ 20$
4	$/ 40+5$
5	$/ 20$
Total	$/ 125+5$

Question 1 (35): (Dog Proof) On Thanksgiving at Dave's house, his dogs Blaze and Rhonda were joined by his daughter's dog Gwen. The family observed the sounds made by the three dogs - barking, growling, and whining.

Given the set of dogs $D=\{B, G, R\}$, the set of sounds $S=\{b a, g r, w h\}$, and the set of numbers $N=\{0,1,2\}$, we define a function f from $D \times S$ to N such that if x is in D and y is in $S, f(x, y)=0$ if dog x never makes sound $y, f(x, y)=1$ if x rarely makes sound y, and $f(x, y)=2$ if x often makes sound y.
We also define three propositions p as " $f(B, b a)=2 ", q$ as " $f(G, b a)=2 "$, and r as $" f(R, b a)=2$ ".
Question 1a (10): Translate the following five statements as indicated:
Statement I (to symbols): Either Blaze or Gwen, but not both of them, barks often.

Statement II (to English): $((f(R, b a)=2) \vee(f(G, b a)=2)) \wedge(f(B, b a)=2)$

Statement III (to symbols): There is no dog that never barks.

Statement IV (to English): $\forall n:(\exists d: f(d, g r)=n) \wedge(\exists s: f(R, s)=n) \wedge(\exists t: f(G, t)=n)$

Statement V (to symbols): Given any two sounds, Blaze has the same frequency for each.

Question 1b (10): Using only Statement I and Statement II, determine the truth value of the three propositions p, q, and r. You may use either a truth table or deductive rules. If you do the latter, remember that for full credit you must verify that your solution satisfies both the rules.

Question 1c (15): Using all of Statements I-V, determine the nine values of the function f. That is, for each pair (x, y) in the domain $D \times S$, find $f(x, y)$.

Question 2 (10): (Induction 1) Prove, by induction, either one of the following two statements:
"There exists a natural m such that for any natural $n,(n \geq m) \rightarrow\left(n!<3^{n}\right)$."
"There exists a natural m such that for any natural $n,(n \geq m) \rightarrow\left(3^{n}<n!\right)$."
(We could offer you extra credit for proving both, but we won't.)
(Hint: This can be done with ordinary induction, for an appropriate base case.)

Question 3 (20): (Induction 2) Recall that a rooted binary tree (RBT) consists of either

- a single node, which is its root, or
- a new node, its root, which is connected to the roots of two other RBT's.

An edge 3-coloring is an assignment of colors (red, blue, or green) to the edges of an RBT. A coloring is valid if there is no node that is adjacent to two edges of the same color.

Question 3a (5):

Give a valid edge 3 -coloring of the following RBT:

Question 3b (15):

Prove that given any RBT T, we can make a valid edge 3-coloring for T.
(Hint: Prove this by induction on the definition of RBT's, but let your $P(T)$ be "for any color c, we can make a valid edge 3-coloring of T such that the root has no adjacent edge of color c ".)

Question $4(40+5)$: (Kleene Constructions) Let N be the following λ-NFA. The alphabet is $\Sigma=\{a, b\}$. The state set is $\{i, p, q, r\}$, the start state is i, and the final state set is $\{q, r\}$. The transitions are $(i, a, p),(i, a, r),(p, b, p),(p, b, q),(p, b, r),(q, a, r),(q, \lambda, r)$, and (r, λ, p).
(a, 10) Apply the Killing λ-Moves Construction to find an ordinary NFA N^{\prime} such that $L\left(N^{\prime}\right)=L(N)$. If you deviate from the construction given in lecture and the textbook, explain why your construction is still correct. The correct NFA has four a-moves and nine b-moves.
$(\mathrm{b}, 10)$ Using the Subset Construction on N^{\prime}, create a DFA such that $L(D)=L\left(N^{\prime}\right)$.
(c, 5 XC) Is your constructed DFA D minimal for its language? If so, argue that it is minimal, either using the Minimization Construction or by direct use of distinguishability. If not, find a DFA D^{\prime} such that $L\left(D^{\prime}\right)=L(D)$ and D^{\prime} is minimal, justifying your answer if you did not use the Minimization Algorithm.
(d, 10) Using the DFA D (or an equivalent D^{\prime} if you found one), find a regular expression R such that $L(R)=L(D)$.
$(\mathrm{e}, 10)$ Compute a λ-NFA $N^{\prime \prime}$ such that $L\left(N^{\prime \prime}\right)=L(R)$. Use a construction starting from R rather than just using N. If you use a construction other than the one given in the lectures and the textbook, explain it and argue that it is correct.

Question 5 (20): The following are ten true/false questions, with no explanation needed or wanted, no partial credit for wrong answers, and no penalty for guessing.

- (a) Let n be a positive natural, and let R be the equivalence relation of mod- n congruence on the positive naturals. Then R divides the positive naturals into exactly $n-1$ equivalence classes.
- (b) Let N be an NFA, and let N^{\prime} be a new NFA that is identical to N except that every final state of N is non-final in N^{\prime}, and vice versa. Then $L(N)$ must be the complement of $L\left(N^{\prime}\right)$.
- (c) Let Σ be any finite alphabet. Then the language $\left(\Sigma^{0}\right)^{*}$ is non-empty if and only if Σ itself is non-empty.
- (d) Let x be any natural. Then if x is divisible by either 3 or 7 , then it is also divisible by 21 .
- (e) Let G be directed graph with positive edge labels, and let h be an admissible, consistent heuristic for some goal node g. Suppose we conduct two searches with s as start node and g as the goal node, one a uniform-cost search and the other an A^{*} search using h. Then both searches will return the same distance from s to g.
- (f) Let M be an ordinary Turing machine with tape alphabet $\{a, b, \square\}$, where \square is the blank symbol. Let p, q be states of M with $\delta(p, a)=(q, a, R)$ and $\delta(q, a)=(p, a, L)$. Then if we start M in configuration $\square b p a a b \square, M$ will never halt.
- (g) Let R and S be any two regular expressions. Then the expressions $\left(R+S^{*}\right)\left(R^{*}+S\right)$ and $\left(R^{*}+S\right)\left(R+S^{*}\right)$ may fail to have the same language.
- (h) Let w be a binary string. Then the set of substrings of w is equal to the set of prefixes of suffixes of w.
- (i) Let M be a five-tape Turing machine. Then there exists an ordinary single-tape Turing machine M^{\prime} such that $L\left(M^{\prime}\right)=L(M)$.
- (j) Let A and B be two finite sets, and let f be a surjective (onto) function from A to B that is not a bijection. Then there exists an injective (one-to-one) function g from B to A that is not a bijection.

COMPSCI 250 Final Exam Supplementary Handout:12 December 2023

The statements of Question 1a are:
Statement I (to symbols): Either Blaze or Gwen, but not both of them, barks often.
Statement II (to English): $((f(R, b a)=2) \vee(f(G, b a)=2)) \wedge(f(B, b a)=2)$
Statement III (to symbols): There is no dog that never barks.
Statement IV (to English): $\forall n: \exists d: f(d, g r)=n) \wedge(\exists s: f(R, s)=n) \wedge(\exists t: f(G, t)=n)$
Statement V (to symbols): Given any two sounds, Blaze has the same frequency for each.
The λ-NFA N defined in Question 4a is as follows:
The alphabet is $\Sigma=\{a, b\}$. The state set is $\{i, p, q, r\}$, the start state is i, and the final state set is $\{q, r\}$. The transitions are $(i, a, p),(i, a, r),(p, b, p),(p, b, q),(p, b, r),(q, a, r),(q, \lambda, r)$, and (r, λ, p).

