CMPSCI 250: Introduction to Computation

Lecture #37:Two-Way Automata and Turing Machines
David Mix Barrington
2 December 2013

2WDFA's and Turing Machines

- Enhancing a DFA's Abilities
- Definition and Semantics of 2WDFA's
- Why 2WDFA's Have Regular Languages (Sketch)
- Turing Machines
- The Formal Turing Machine Model
- A Turing Machine Example
- The Church-Turing Thesis

Enhancing a DFA's Abilities

- DFA's, and the other models we have now shown to be equivalent to them, model a particular kind of computation. A DFA:
- (I) can read its input only once, from left to right,
- (2) can only read, not write to, the memory holding the input, and
- (3) have only a bounded amount of memory apart from that input.

Enhancing a DFA's Abilities

- In our last week we will look at another model of computation called a **Turing machine**, which we can think of as an enhanced DFA. Turing machines:
- (I) can move both ways on the **tape** that contains their input,
- (2) can **write** new characters into the space that originally holds the input, and
- (3) can utilize **additional memory**, as much as they need, as well as the original space.

Enhancing a DFA's Abilities

- We'll begin today by looking at the effect of adding new ability (I) alone to a DFA, producing a new kind of machine called a two-way DFA.
- In CMPSCI 501 you'll also look at machines that have new abilities (1) and (2) but not (3)
 these are called linear bounded automata.

Two-Way Finite Automata

- Like a DFA, a 2WDFA has a state set Q, start state i, final state set F, input alphabet Σ , and transition function δ .
- The only difference is that δ goes from $Q \times \Sigma$ to $Q \times \{L, R\}$. Based on the current state and the letter it sees, the 2WDFA enters a new state and moves either left or right on its tape.
- It continues taking steps until or unless it moves off one end of the tape.

Semantics of 2WDFA's

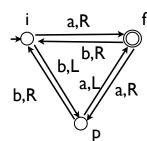
- We need to define the **semantics** of the 2WDFA M -- the meaning of each computation in terms of defining a language L(M).
- We start with the **read head** on the first letter of the input, and start the computation. If the machine moves off the left end of the tape, we say that it **hangs** and the input is not in L(M).

Semantics of 2WDFA's

- If it moves off the right end of the tape, we say that it **accepts** if it goes into a final state and that it **rejects** if it goes into a nonfinal state.
- There is a fourth possibility, that it **loops** or never terminates.
- The input is in L(M) if and only if M accepts.

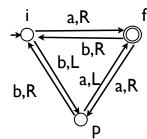
A 2WDFA Example

- Let's look at the behavior of this 2WDFA on some strings:
- On a, it moves right off the input in state f and accepts.
- On b, it moves off the left end and hangs.
- On aaa, it moves right to state f, right again to state p, left to state f, right to p,..., and thus loops forever.



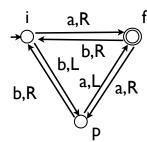
Clicker Question #1

- What does this 2WDFA do on input string abba?
- (a) accepts by leaving to the right in a final state
- (b) rejects by leaving to the right in a nonfinal state
- (c) hangs by leaving to the left
- (d) enters an infinite loop



Answer #1

- What does this 2WDFA do on input string abba?
- (a) accepts by leaving to the right in a final state
- (b) rejects by leaving to the right in a nonfinal state
- (c) hangs by leaving to the left
- (d) enters an infinite loop



2WDFA's and Regular Languages

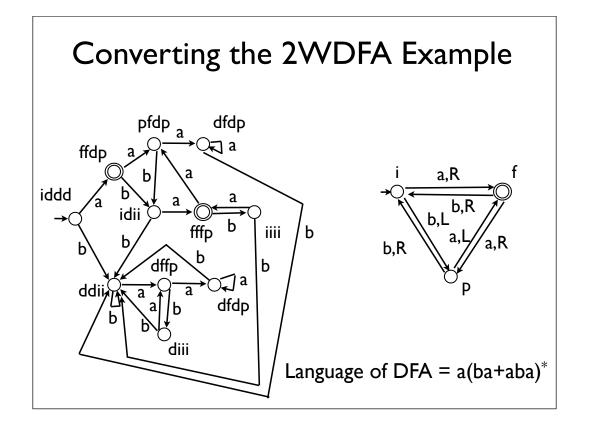
- Could a 2WDFA have a non-regular language like {aⁿbⁿ: n ≥ 0}? For DFA's, we argued that after the a's have been read, the machine "must know" how many a's it saw (formally, each different number of a's was in a different equivalence class).
- But now, the machine could make multiple visits to the a's. Is there any way for it to use this capability to get more information about the a's?

2WDFA's and Regular Languages

- In Section 15.1 of the text, we prove that the language of any 2WDFA is regular. Here is a sketch of the argument.
- Given a 2WDFA M and a string w, we define several functions of w based on M's behavior.
- If M exits w to the right in state q when started in state i on the left, we say that $f_0(w) = q$.
- If it hangs or loops in that situation, we say that $f_0(w) = d$.

2WDFA's and Regular Languages

- Similarly, we define a function f_p for each state
 p. Consider starting M on the right of w in state p.
- If it loops or hangs, we define $f_p(w) = d$.
- If it exits to the right in state q, we define $f_p(w) = q$.



2WDFA's = Regular

- Here's the crux of the argument. Suppose that for two strings v and w, the values of each of these functions are the same. That is, $f_0(v) = f_0(w)$ and for each state p, $f_p(v) = f_p(w)$.
- Then, we will argue, v and w are L(M)-equivalent in the sense of the Myhill-Nerode Theorem.
- Since there are only finitely many possible sequences of values for these functions, there are only finitely many equivalence classes, and the theorem tells us that L(M) is a regular language.

2WDFA's = Regular

- We need to show that for any string z, the strings vz and wz are either both in L(M) or both not in L(M).
- Let z be an arbitrary string, assume that the functions agree on v and w, and look at what happens when M starts computing on v and on w.
- If M hangs or loops on vz without leaving v, it must do the same on wz because $f_0(v) = f_0(w) = d$.

2WDFA's = Regular

- If it exits v to the right, then it also exits w to the right, and in the same state. From that point, the two computations in z proceed identically, until or unless they leave z.
- If they leave to the right, both computations accept or both reject. If they go back into v and w, they do so in the same state p. Then either both die, or both move back into z in the same state $f_p(v) = f_p(w)$, and so forth until eventually both accept, both reject, or both die. So $vz \in L(M) \leftrightarrow wz \in L(M)$.

Turing Machines

• In the 1930's, various researchers designed systems of computation in an attempt to create a simple mathematically precise model that could express any possible computation. The model that has become most widely used is the **Turing machine**, proposed by the English mathematician Alan Turing in 1936. (Another one of these models, the **lambda calculus** of Alonzo Church, developed into the Lisp family of programming languages.)

Turing Machines

- Turing and Church each convinced themselves that any clear, precise computational instructions could be translated (we might say "compiled") into each of their systems.
- When each heard about the other's system, they proved that any computation in one could be translated to the other.

Turing Machines

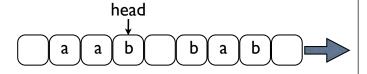
- Thus the two systems defined the same set of computable functions from strings to strings.
- Just as a language is either regular or not, a function is either computable or not.
- (Actually finite-state machines would not be formalized for another twenty years or so.)

The Turing Machine Model

- A **Turing machine** is formally defined by giving a state set Q, an input alphabet Σ , a start state i, and a final state set F, as we've seen already.
- But it also has a **tape alphabet** Γ with $\Sigma \subseteq \Gamma$, and a **blank symbol** \square that is an element of Γ and is the initial contents of every tape cell right of the input.

The Turing Machine Model

- The machine has a **tape** that is infinite to the right and finite to the left. Each cell of the tape holds a letter in Γ at any given time.
- There is a **head** that points to one cell of the tape at any given time.

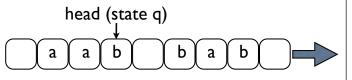


The Turing Machine Model

- The **transition function** δ is from $Q \times \Gamma$ to $Q \times \Gamma \times \{L, R\}$. A **step** of the computation consists of the machine looking at the letter at its head, applying δ to its current state and that letter to get a triple (q, a, L) or (q, a, R), then *changing its state* to q, writing an a in the current cell, and moving left or right.
- Actually δ is not defined for states in F -- the machine **halts** in those states.

Turing Machine Configurations

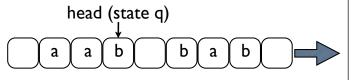
- At any given time, we can describe everything we would ever want to know about the Turing machine's computation by a string called a configuration.
- What we need to record is the current state, the contents of the tape, and the position of the head.



Configuration: □aaqb□bab□

Turing Machine Configurations

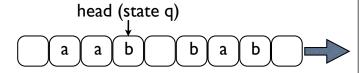
- We record the tape contents as a string of letters from Γ , starting at the left end of the tape and ending with the last non-blank letter.
- We record the state and head position by inserting a letter for the state into this string, just to the left of the head position.



Configuration: □aaqb□bab□

Clicker Question #2

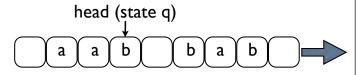
- Suppose $\delta(q, b) = (r, a, L)$. What will be the new configuration of the Turing machine below?
- (a) □aara□bab□
- (b) □arab□bab□
- (c) □aaar□bab□
- (d) □araa□bab□



Configuration: \Box aaqb \Box bab \Box

Answer #2

- Suppose $\delta(q, b) = (r, a, L)$. What will be the new configuration of the Turing machine below?
- (a) □aara□bab□
- (b) □arab□bab□
- (c) □aaar□bab□
- (d) □araa□bab□



Configuration: \Box aaqb \Box bab \Box

Turing Configurations

- A Turing machine starts with only finitely many non-blank symbols on its tape.
- So in writing a configuration, we only need to go the the last non-blank symbol (unless we need to go further to indicate the head position).
- We can think of the computation then as a series of configurations, starting with i□w₁w₂...w_n and continuing until or unless the machine halts or hangs.

A Turing Machine Example

- Here is a machine that solves a problem that a DFA cannot. When started in configuration $i \square w_1 w_2 ... w_n$, it will halt if and only if w is in the language $\{a^n b^n : n \ge 0\}$ -- otherwise it will hang.
- With input aabb we get i□aabb, □paabb,
 □qabb, □□aqbb, □□abqb, □□abbq□,
 □□abrb, □□asb, □□sab, □sab, □□pab,
 □□qb, □□□bq□, □□□rb, □□s□,
 □□p□, □□□h□. The string aabb is accepted.

A Turing Machine Example

Clicker Question #3

- What does this TM do on inputs λ (starting i \square) and b (starting i \square b \square)?
- (a) accepts both (b) hangs on λ , accepts b
- (c) hangs on both (d) accepts λ , hangs on b

```
In i: Move R and go to p.
In p: On □, go to h.
        On b, move L and go to z.
        On a, print □, move R, and go to q.
In h: Halt (final state).
In z: Move left and stay in z.
```

Answer #3

- What does this TM do on inputs λ (starting $i\Box$) and b (starting $i\Box b\Box$)?
- (a) accepts both (b) hangs on λ , accepts b
- (c) hangs on both (d) accepts λ , hangs on b

```
In i: Move R and go to p.
In p: On □, go to h.
         On b, move L and go to z.
         On a, print □, move R, and go to q.
In h: Halt (final state).
In z: Move left and stay in z.
```

The Church-Turing Thesis

- The **Church-Turing Thesis** says that any "reasonable" general-purpose model of computation will be able to compute exactly the same functions from strings to strings as Turing machines or the lambda calculus.
- (More precisely, they compute the same set of **partial functions**, because a general computation always has the possibility of not returning an output.)

The Church-Turing Thesis

- We can't mathematically prove this thesis, only amass evidence for it. In fact it actually serves as an implicit definition of "reasonable".
- Serious people have argued against the thesis -for example physicist Roger Penrose argues that quantum effects in the brain compute in ways that a Turing machine could not. (He's wrong.)
- For more on this see Turing's article On Minds and Machines or almost anything by Douglas Hofstadter.

The Church-Turing Thesis

- You probably believe that we could simulate a Turing machine in Java, given unlimited memory. Could a Turing machine simulate any Java program?
- We know that Java can be compiled into machine language, so we would have to believe that any machine language program could be simulated by a TM.