
CMPSCI 250: Introduction to
Computation

Lecture #35: λ-NFA’s From Regular Expressions
David Mix Barrington
25 November 2013

λ-NFA’s From Regular Expressions

• Review: Parts of Kleene’s Theorem

• Review: Induction on Regular Expressions

• A Normal Form for λ-NFA’s

• The Construction

• The Star Case and the Proof

• An Example: (ab + ba)* + bb

• Taking This Example to a Minimal DFA

Review: Kleene’s Theorem Parts
• Our goal in Kleene’s Theorem is to be able to

convert regular expressions to DFA’s and
vice versa.

• In the last two lectures we’ve provided two
of the three pieces of the transformation
from regular expressions to DFA’s.

• We defined ordinary NFA’s and λ-NFA’s, then
presented the Subset Construction to turn
ordinary NFA’s to DFA’s, then presented the
Killing λ-Moves Construction to turn λ-
NFA’s to ordinary NFA’s.

Kleene’s Theorem Chart

Reg. Expr.

λ-NFA

R.E.-NFA

DFA

Ord. NFA

Wed 20

Wed 27

Mon 25

Fri 22

Wed 27

Kleene’s Theorem Parts

• Today we will see how to convert regular
expressions to equivalent λ-NFA’s. This will
complete the steps needed to go from
regular expressions to DFA’s.

• In our next lecture we will finish Kleene’s
Theorem by presenting the State Elimination
Construction to convert DFA’s (or NFA’s, or
λ-NFA’s) to regular expressions.

Review: Induction on R.E.’s
• We want to prove that for every regular

expression R, we can construct a λ-NFA N
such that L(N) = L(R).

• The way to prove a proposition P(R) for all
regular expressions R is to use induction on
the definition of regular expressions. We
must prove the two base cases, (1) P(∅) and
(2) P(a) for every letter a ∈ Σ. Then we must
prove the three inductive cases. If P(R) and
P(S) are true, we must (3) prove P(R + S), (4)
prove P(RS), and (5) prove P(R*).

Review: Induction on R.E.’s

• Here P(R) is “there exists N with L(N) =
L(R)”.

• As with our other inductive proofs on regular
expressions, we will actually define a
recursive algorithm that will take R as input
and return N as output.

• We could code this algorithm in pseudo-Java
using the class definition for RegExp and a
new class definition for LambdaNFA, but we
will stick with an informal description here.

A Normal Form for λ-NFA’s

• Since we want to actually carry out this
construction by hand on examples, we’re
going to make it a little more complicated
than it would need to be just to prove that a
valid construction exists.

• We’ll produce λ-NFA’s in a particular
normal form -- they will satisfy three rules
that will allow us to make simpler λ-NFA’s in
most cases.

A Normal Form for λ-NFA’s

• Rule (1) says that the λ-NFA has exactly one
final state, which isn’t the start state.

• Rule (2) says that no transitions go into the
start state.

• Rule (3) says that no transitions go out of the
final state.

• Similar rules will also show up later in the
State Elimination Construction.

The Construction

• (1) For ∅, we need a λ-NFA with a start state
and a final state. That’s all we need -- if it has
no transitions, it accepts no strings and its
language is ∅.

• (2) For a, we can again have a start state i and
a final state f, with a single transition (i, a, f).
The rules are satisfied, and the language is {a}
as it should be.

a

The Construction

• 3) Now assume, as our IH, that we have
constructed λ-NFA’s M and Mʹ for our two
regular expressions R and Rʹ, and that M and
Mʹ follow the three rules. We need to build a
new λ-NFA Mʹʹ such that L(Mʹʹ) = L(M) ∪
L(Mʹ) = L(R + Rʹ).

• Mʹʹ will have (copies of) all the states of M
and Mʹ, but we will merge the two initial
states, and merge the two final states.

Step (3) Example

a

a

a

a

b

b
b

b

Step (4) and Example

a

a

a

a

b

b

b b

(4) To make Mʹʹʹ with L(Mʹʹʹ) = L(M)L(Mʹ)
= L(RRʹ), we instead merge the final
state of M with the initial state of Mʹ,

making the new state non-final.

Clicker Question #1

• With the steps of the construction so far, we
can make a λ-NFA for the regular expression
(abb + ba + b)ba. How many states does it
have?

• (a) 5

• (b) 6

• (c) 7

• (d) 8

Answer #1

• With the steps of the construction so far, we
can make a λ-NFA for the regular expression
(abb + ba + b)ba. How many states does it
have?

• (a) 5

• (b) 6

• (c) 7

• (d) 8

b
b

b

b

b
a

a

a

Step (5): The Star Case

• (5) Finally we want to build a λ-NFA N such
that L(N) = L(M)* = L(R*). Assume that M
has start state i and final state f.

• N’s states will be M’s states plus two more, a
new start state s and a new final state t.

• We then add four new λ-moves: (s, λ, i), (i, λ,
f), (f, λ, i), and (f, λ, t).

• We make f now a non-final state.

Step (5) Example

a

a

a

b

b λλ

λ

λ

Validity of the Construction

• Now we want to prove by induction on all
regular expressions that this construction is
correct -- if N is the λ-NFA made from R,
then L(N) = L(R).

• This is pretty obvious for the two base cases
as we can check the languages of the λ-NFA’s
directly.

• So we must check the three inductive cases.

Validity of the Construction

• With the two λ-NFA’s connected in parallel in
step (3), a path from the start to final state of Mʹʹ
must go through either only states of M or only
states of Mʹ.

• The first move must be into either one machine or
the other. From then on we stay in that machine
until we finish, as the rules stop us from returning
to the start or continuing past the final state.

• The path has either read a string in L(M) or read a
string in L(Mʹ).

Correctness of Step (4)

• In step (4) we created Mʹʹʹ by connecting M and Mʹ
in series, and we must show that L(Mʹʹʹ) =
L(M)L(Mʹ). How could a path get from the start
state of Mʹʹʹ (which is the start state of M) to the
final state of Mʹʹʹ (which is the start state of Mʹ)?

• The first transition has to be in M, then the path
must stay in M until it reaches the final state of M.
The only way out of that state is into Mʹ, where it
must stay until it reaches the final state and then
stops. So the path reads a string in L(M) followed by
a string in L(Mʹ), as it should.

Correctness of Step (5)

• In step (5) we created N by adding two new states
and four new λ-moves to N. First note that we
can read any sequence of zero or more strings in
L(M) by going to i, reading each string going from i
to f, returning to i each time, then winding up in t.

• Furthermore, any path from s to t must consist of
some combination of trips from i through M to f,
and uses of the new λ-moves. So the string we
read is the concatenation of zero or more strings
in L(M), and thus is in L(M)*.

Notes on the Construction

• The construction makes use of the normal
form constantly -- if we could not assume
that the input λ-NFA’s followed the rules, we
would need to introduce new states and new
λ-moves in steps (3) and (4) as well as in (5).

• We pay for the normal form in step (5). We
need to connect the start and final states, but
then, in order to obey the rules, we need to
put in new start and final states.

Clicker Question #2
• If M is a machine satisfying (1), (2), and (3), with

initial state i and final state f, and we form M’ by
adding moves (i, λ, f) and (f, λ, i), is L(M’) = L(M)*?

• (a) No, you need a new initial and final state.

• (b) No, λ was already in L(M) so L(M’) = L(M).

• (c) Yes, but M’ breaks our normal form rules.

• (d) Yes, and this saves λ-moves in the construction.

M
λ

λ
f

i

Answer #2
• If M is a machine satisfying (1), (2), and (3), with

initial state i and final state f, and we form M’ by
adding moves (i, λ, f) and (f, λ, i), is L(M’) = L(M)*?

• (a) No, you need a new initial and final state.

• (b) No, λ was already in L(M) so L(M’) = L(M).

• (c) Yes, but M’ breaks our normal form rules.

• (d) Yes, and this saves λ-moves in the construction.

M
λ

λ
f

i

Notes on the Construction
• We only create λ-moves when we do step (5). Thus

if R has few or no stars, we will get a λ-NFA with few
or no λ-moves, which can be good because making an
ordinary NFA is more complicated the more λ-
moves there are.

• We can sometimes see ways to simplify the λ-NFA
without changing the language. But we need to be
careful that our simplification is correct.

• It can be shown that the number of states in the λ-
NFA is about the same as the length of the regular
expression. So the only big blowup is NFA’s to DFA’s.

An Example: (ab + ba)* + bb

• Let’s see how the construction works on a
fairly complicated regular expression. (There
are diagrams of this example in the text.) We
can think of the construction either top-
down or bottom-up -- let’s try bottom-up.

• The three regular expressions “ab”, “ba”, and
“bb” each get three-state λ-NFA’s, with letter
moves from the start state to a middle state
and from that middle state to a final state.

An Example: (ab + ba)* + bb

• As we saw, the λ-NFA for “ab + ba” has four
states, three each for “ab” and “ba” minus
two when we merge the two start states and
two final states. To get a λ-NFA for (ab + ba)*
we add a new start and final state, plus four
new λ-moves, to get a six-state λ-NFA with
four letter moves and four λ-moves.

λ

b
λ

λ

λ
b

a

a

An Example: (ab + ba)* + bb

• Finally, we place this six-state machine in
parallel with the three-state machine for
“bb”, getting a seven-state machine with six
letter moves and four λ-moves.

λ

b
λ

λ

λ
b

a

a
b b

Killing the λ-Moves

• Killing the λ-moves in this seven-state λ-NFA
gives us a seven-state ordinary NFA with
state set {i, p, q, r, s, t, f}, start state i, final state
set {i, f}, and fourteen transitions:

b

b

a

a

b b

a

b

b
b

a
b aa

Making a DFA

• We could potentially get 128 states in our
DFA, but fortunately the process stops with
only seven. This DFA is minimal.

b

b

a

a

b b

a

b

b
b

a
b aa

t

b

r

q

f
i

{q}

{r,t}

{i}

sp

{p,s,f}

{r}

∅

{f}{i}

a

aa

a,b

a,b

a

a

b

b
b

b

Clicker Question #3

• How do we know that states
{i} and {p,s,f} cannot be
merged in the minimization?

• (a) The string bb takes one to
final but not the other.

• (b) You can never merge the
start state.

• (c) Both go to {q} on a.

• (d) Both have paths to ∅.

b

{q}

{r,t}

{i} {p,s,f}

{r}

∅

{f}{i}

a

aa

a,b

a,b

a

a

b

b
b

b

Answer #3

• How do we know that states
{i} and {p,s,f} cannot be
merged in the minimization?

• (a) The string bb takes one to
final but not the other.

• (b) You can never merge the
start state.

• (c) Both go to {q} on a.

• (d) Both have paths to ∅.

b

{q}

{r,t}

{i} {p,s,f}

{r}

∅

{f}{i}

a

aa

a,b

a,b

a

a

b

b
b

b

