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λ-NFA’s From Regular Expressions

• Review: Parts of Kleene’s Theorem

• Review: Induction on Regular Expressions

• A Normal Form for λ-NFA’s

• The Construction

• The Star Case and the Proof

• An Example: (ab + ba)* + bb

• Taking This Example to a Minimal DFA



Review: Kleene’s Theorem Parts
• Our goal in Kleene’s Theorem is to be able to 

convert regular expressions to DFA’s and 
vice versa.  

• In the last two lectures we’ve provided two 
of the three pieces of the transformation 
from regular expressions to DFA’s.  

• We defined ordinary NFA’s and λ-NFA’s, then 
presented the Subset Construction to turn 
ordinary NFA’s to DFA’s, then presented the 
Killing λ-Moves Construction to turn λ-
NFA’s to ordinary NFA’s. 
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Kleene’s Theorem Parts

• Today we will see how to convert regular 
expressions to equivalent λ-NFA’s.  This will 
complete the steps needed to go from 
regular expressions to DFA’s.

• In our next lecture we will finish Kleene’s 
Theorem by presenting the State Elimination 
Construction to convert DFA’s (or NFA’s, or 
λ-NFA’s) to regular expressions.



Review: Induction on R.E.’s
• We want to prove that for every regular 

expression R, we can construct a λ-NFA N 
such that L(N) = L(R).

• The way to prove a proposition P(R) for all 
regular expressions R is to use induction on 
the definition of regular expressions.  We 
must prove the two base cases, (1) P(∅) and 
(2) P(a) for every letter a ∈ Σ.  Then we must 
prove the three inductive cases.  If P(R) and 
P(S) are true, we must (3) prove P(R + S), (4)   
prove P(RS), and (5) prove P(R*).



Review: Induction on R.E.’s

• Here P(R) is “there exists N with L(N) = 
L(R)”.  

• As with our other inductive proofs on regular 
expressions, we will actually define a 
recursive algorithm that will take R as input 
and return N as output.  

• We could code this algorithm in pseudo-Java 
using the class definition for RegExp and a 
new class definition for LambdaNFA, but we 
will stick with an informal description here.



A Normal Form for λ-NFA’s

• Since we want to actually carry out this 
construction by hand on examples, we’re 
going to make it a little more complicated 
than it would need to be just to prove that a 
valid construction exists.  

• We’ll produce λ-NFA’s in a particular 
normal form -- they will satisfy three rules 
that will allow us to make simpler λ-NFA’s in 
most cases.



A Normal Form for λ-NFA’s

• Rule (1) says that the λ-NFA has exactly one 
final state, which isn’t the start state.

• Rule (2) says that no transitions go into the 
start state.

• Rule (3) says that no transitions go out of the 
final state.

• Similar rules will also show up later in the 
State Elimination Construction.



The Construction

• (1) For ∅, we need a λ-NFA with a start state 
and a final state.  That’s all we need -- if it has 
no transitions, it accepts no strings and its 
language is ∅.

• (2) For a, we can again have a start state i and 
a final state f, with a single transition (i, a, f).  
The rules are satisfied, and the language is {a} 
as it should be.

a



The Construction

• 3) Now assume, as our IH, that we have 
constructed λ-NFA’s M and Mʹ for our two 
regular expressions R and Rʹ, and that M and 
Mʹ follow the three rules.  We need to build a 
new λ-NFA Mʹʹ such that L(Mʹʹ) = L(M) ∪ 
L(Mʹ) = L(R + Rʹ).  

• Mʹʹ will have (copies of) all the states of M 
and Mʹ, but we will merge the two initial 
states, and merge the two final states.



Step (3) Example
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Step (4) and Example
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(4) To make Mʹʹʹ with L(Mʹʹʹ) = L(M)L(Mʹ) 
= L(RRʹ), we instead merge the final 
state of M with the initial state of Mʹ, 

making the new state non-final.



Clicker Question #1

• With the steps of the construction so far, we 
can make a λ-NFA for the regular expression 
(abb + ba + b)ba.  How many states does it 
have?

• (a) 5

• (b) 6

• (c) 7

• (d) 8



Answer #1

• With the steps of the construction so far, we 
can make a λ-NFA for the regular expression 
(abb + ba + b)ba.  How many states does it 
have?

• (a) 5

• (b) 6

• (c) 7

• (d) 8
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Step (5): The Star Case 

• (5) Finally we want to build a λ-NFA N such 
that L(N) = L(M)* =  L(R*).  Assume that M 
has start state i and final state f.  

• N’s states will be M’s states plus two more, a 
new start state s and a new final state t.  

• We then add four new λ-moves: (s, λ, i), (i, λ, 
f), (f, λ, i), and (f, λ, t).  

• We make f now a non-final state.



Step (5) Example
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Validity of the Construction

• Now we want to prove by induction on all 
regular expressions that this construction is 
correct -- if N is the λ-NFA made from R, 
then L(N) = L(R).  

• This is pretty obvious for the two base cases 
as we can check the languages of the λ-NFA’s 
directly.  

• So we must check the three inductive cases.



Validity of the Construction

• With the two λ-NFA’s connected in parallel in 
step (3), a path from the start to final state of Mʹʹ 
must go through either only states of M or only 
states of Mʹ.  

• The first move must be into either one machine or 
the other.  From then on we stay in that machine 
until we finish, as the rules stop us from returning 
to the start or continuing past the final state.

• The path has either read a string in L(M) or read a 
string in L(Mʹ).



Correctness of Step (4)

• In step (4) we created Mʹʹʹ by connecting M and Mʹ 
in series, and we must show that L(Mʹʹʹ) = 
L(M)L(Mʹ).  How could a path get from the start 
state of Mʹʹʹ (which is the start state of M) to the 
final state of Mʹʹʹ (which is the start state of Mʹ)?  

• The first transition has to be in M, then the path 
must stay in M until it reaches the final state of M.  
The only way out of that state is into Mʹ, where it 
must stay until it reaches the final state and then 
stops.  So the path reads a string in L(M) followed by 
a string in L(Mʹ), as it should.



Correctness of Step (5)

• In step (5) we created N by adding two new states 
and four new λ-moves to N.  First note that we 
can read any sequence of zero or more strings in 
L(M) by going to i, reading each string going from i 
to f, returning to i each time, then winding up in t. 

• Furthermore, any path from s to t must consist of 
some combination of trips from i through M to f, 
and uses of the new λ-moves.  So the string we 
read is the concatenation of zero or more strings 
in L(M), and thus is in L(M)*.



Notes on the Construction

• The construction makes use of the normal 
form constantly -- if we could not assume 
that the input λ-NFA’s followed the rules, we 
would need to introduce new states and new 
λ-moves in steps (3) and (4) as well as in (5).

• We pay for the normal form in step (5).  We 
need to connect the start and final states, but 
then, in order to obey the rules, we need to 
put in new start and final states.



Clicker Question #2
• If M is a machine satisfying (1), (2), and (3), with 

initial state i and final state f, and we form M’ by 
adding  moves (i, λ, f) and (f, λ, i), is L(M’) = L(M)*? 

• (a) No, you need a new initial and final state.

• (b) No, λ was already in L(M) so L(M’) = L(M).

• (c) Yes, but M’ breaks our normal form rules.

• (d) Yes, and this saves λ-moves in the construction.

M
λ

λ
f

i



Answer #2
• If M is a machine satisfying (1), (2), and (3), with 

initial state i and final state f, and we form M’ by 
adding  moves (i, λ, f) and (f, λ, i), is L(M’) = L(M)*?

• (a) No, you need a new initial and final state.

• (b) No, λ was already in L(M) so L(M’) = L(M).

• (c) Yes, but M’ breaks our normal form rules.

• (d) Yes, and this saves λ-moves in the construction.
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Notes on the Construction
• We only create λ-moves when we do step (5).  Thus 

if R has few or no stars, we will get a λ-NFA with few 
or no λ-moves, which can be good because making an 
ordinary NFA is more complicated the more λ-
moves there are.

• We can sometimes see ways to simplify the λ-NFA 
without changing the language.  But we need to be 
careful that our simplification is correct.

• It can be shown that the number of states in the λ-
NFA is about the same as the length of the regular 
expression.  So the only big blowup is NFA’s to DFA’s.



An Example: (ab + ba)* + bb

• Let’s see how the construction works on a 
fairly complicated regular expression.  (There 
are diagrams of this example in the text.)  We 
can think of the construction either top-
down or bottom-up -- let’s try bottom-up.

• The three regular expressions “ab”, “ba”, and 
“bb” each get three-state λ-NFA’s, with letter 
moves from the start state to a middle state 
and from that middle state to a final state.  



An Example: (ab + ba)* + bb

• As we saw, the λ-NFA for “ab + ba” has four 
states, three each for “ab” and “ba” minus 
two when we merge the two start states and 
two final states.  To get a λ-NFA for (ab + ba)* 
we add a new start and final state, plus four 
new λ-moves, to get a six-state λ-NFA with 
four letter moves and four λ-moves.
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An Example: (ab + ba)* + bb

• Finally, we place this six-state machine in 
parallel with the three-state machine for 
“bb”, getting a seven-state machine with six 
letter moves and four λ-moves.
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Killing the λ-Moves

• Killing the λ-moves in this seven-state λ-NFA 
gives us a seven-state ordinary NFA with 
state set {i, p, q, r, s, t, f}, start state i, final state 
set {i, f}, and fourteen transitions:
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Making a DFA

• We could potentially get 128 states in our 
DFA, but fortunately the process stops with 
only seven.  This DFA is minimal.
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Clicker Question #3

• How do we know that states 
{i} and {p,s,f} cannot be 
merged in the minimization?

• (a) The string bb takes one to  
final but not the other.

• (b) You can never merge the 
start state.

• (c) Both go to {q} on a.

• (d) Both have paths to ∅.
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Answer #3

• How do we know that states 
{i} and {p,s,f} cannot be 
merged in the minimization?

• (a) The string bb takes one to  
final but not the other.

• (b) You can never merge the 
start state.

• (c) Both go to {q} on a.

• (d) Both have paths to ∅.
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