
CMPSCI 250: Introduction to
Computation

Lecture #31: What DFA’s Can and Can’t Do
David Mix Barrington
15 November 2013

What DFA’s Can and Can’t Do

• Deterministic Finite Automata

• Formal Definition of DFA’s

• Examples of DFA’s

• DFA’s in Java

• Characterizing Strings With Given Behavior

• Distinguishable Strings

• Languages With No DFA’s

Deterministic Finite Automata

• We now turn to finite-state machines, a
model of computation that captures the idea
of reading a file of text with a fixed limit on
the memory we can use to remember what
we have seen.

• In particular, the memory used must be
constant, independent of the length of the
file. We ensure this by requiring our machine
to have a finite state set, so that at any
time during the computation all that it knows
is which state it is in.

Deterministic Finite Automata

• The initial state is fixed. When the
machine sees a new letter, it changes to a
new state based on a fixed transition
function. When it finishes the string, it
gives a yes or no answer based on whether it
is in a final state.

• Because the new state depends only on the
old state and the letter seen, the computation
is deterministic and the machine is called
a deterministic finite automaton or
DFA.

Where We Are Going

• A DFA decides a language -- it reads a
string over its alphabet and then answers
“yes” or “no”. The language of the DFA
is the set of strings for which it says yes.

• We call a language X decidable if there
exists a DFA whose language is X. Later we’ll
prove that some languages are not decidable.

Where We Are Going

• The Myhill-Nerode Theorem will give
us a way to take an arbitrary language and
determine whether it is decidable.

• We’ll define a particular equivalence relation
on strings, based only on the language. If this
relation has a finite set of equivalence classes,
there is a DFA for the language, and there is a
minimal DFA with as many states as there
are classes. We’ll see how to compute the
minimal DFA from any DFA for the language.

Where We Are Going

• As we’ve mentioned, there is a DFA for a
language if and only if the language is
regular (that is, if and only if it is the
language denoted by some regular
expression).

• We’ll prove this important result, called
Kleene’s Theorem, over several lectures.
Our proofs will show us how to convert a
DFA to a regular expression and vice versa.

Formal Definition of DFA’s

• Formally a DFA is defined by its state set
S, its initial state i ∈ S, its final state set
F ⊆ S, its input alphabet Σ, and its
transition function δ from (S × Σ) to S.

• We usually represent DFA’s by diagrams
(labeled directed multigraphs) with a node for
each state, a special mark for the initial state,
a double circle on each final state, and an
arrow labeled “a” from node p to node q
whenever δ(p, a) = q.

 A DFA Example

• Here is a DFA with state
set {1, 2, 3, 4}, initial state
1, final state set {3},
alphabet {a, b}, and a
transition function
indicated by the arrows.

• For any string, we can
follow the arrows for its
letters in order. The
strings a, ba, and bbbaa are
in this DFA’s language.

b b

bb

a
a

a
a

1

2

3

4

 Clicker Question #1

• Which of these strings is
not in the language of this
DFA?

• (a) aaabababaa

• (b) bababaabaa

• (c) bbbbaaaa

• (d) abbaaba

b b

bb

a
a

a
a

1

2

3

4

 Answer #1

• Which of these strings is not in
the language of this DFA?

• (a) aaabababaa
(1-3-1-3-2-4-2-4-2-4-3)

• (b) bababaabaa
(1-4-3-2-4-2-4-3-2-4-3)

• (c) bbbbaaaa
(1-4-2-2-2-4-3-1-3)

• (d) abbaaba (1-3-2-2-4-3-2-4)

b b

bb

a
a

a
a

1

2

3

4

Behavior of a DFA

• The behavior function of a particular
DFA is a function called δ* from (S × Σ*) to S,
such that δ*(p, w) is the state of the DFA after
it starts in state p and reads the string w.

• Formally, we say that δ*(p, λ) = p and that
δ*(p, wa) = δ(δ*(p, w), a).

• The language of a DFA is defined to be
the set of strings w such that δ*(i, w) is a final
state. For a DFA M, we call this language
L(M).

More Examples of DFA’s

• One of the simplest possible DFA’s decides
the language of binary strings with an odd
number of ones. It has two states E and O,
representing whether the machine has seen
an even or odd number of ones so far. The
initial state is E, and the final state set is {O}.
The transition function has δ(E, 0) = E, δ(E, 1)
= O, δ(O, 0) = O, and δ(O, 1) = E.

E O

1

1

0 0

More Examples of DFA’s

• We can build a four-state DFA
for the language EE, of strings
with an even number of a’s and
an even number of b’s.

• Its states are EE, EO, OE, and
OO. For example, δ*(EE, w) =
EO if w has an even number of
a’s and an odd number of b’s.

a

OOOE

EOEE

a aa

b
b

b
b

More Examples of DFA’s

• Another four-state DFA can
decide whether the next to last
letter of a binary string w exists
and is 1.

• The state set is {00, 01, 10, 11}
and the state after reading w
represents the last two letters
seen. The initial state is 00 and
the final state set is {10, 11}.

1

1011

0100

01

0

1

1

0

0

DFA’s in Pseudo-Java

• We consider the input to be given like a file,
with a method to give the next letter and one
to tell when the input is done.

• We relabel the state set and the alphabet to
be {0,..., states - 1} and
{0,..., letters - 1} respectively.

DFA’s in Pseudo-Java

public class DFA {
 natural states;
 natural letters;
 natural start;
 boolean [] isFinal =
 new boolean[states];
 natural [] [] delta =
 new natural [states] [letters];
 natural getNext() {code omitted}
 boolean inputDone() {code omitted}

DFA’s in Pseudo-Java

 boolean decide ()
 {// returns whether input string is
 // in the language of the DFA

 natural current = start;
 while (!inputDone())
 current =
 delta[current][getNext()];
 return isFinal [current];}}

The States With a Behavior

• How do we prove that a particular DFA has a
particular language?

• With the even-odd DFA, we can say that
δ*(E, w) = E if w has an even number of ones,
and δ*(E, w) = O if it has an odd number of
ones.

E O

1

1

0 0

The States With a Behavior

• “δ*(E, w) = E if w has an even number of ones,
and δ*(E, w) = O if it has an odd number of
ones.”

• Letting P(w) be the entire statement in the
bullet above, we can prove ∀w:P(w) by
induction on all binary strings. P(λ) says that
δ*(E, λ) = E, because λ has no ones and 0 is
even, and δ*(E, λ) = E is true by definition of δ*.

E O

1

1

0 0

The States With a Behavior

• Now assume that P(w) is true, so that δ*(E, w)
is E if w has an even number of ones and O
otherwise. Then w0 has the same number of
ones as w, so δ*(E, w0) should be the same state
as δ*(E, w). And w1 has one more one than w,
so δ*(E, w1) should be the other state from
δ*(E, w). In each of the four cases, the new state
is the state given by the δ function of the DFA.

E O

1

1

0 0

 The No-aba Language

• The language No-aba is the
set of strings that never
have an aba substring.

• We can build a DFA M for
No-aba with state set {1, 2,
3, 4}, start state 1, final state
set {1, 2, 3}, and transition
function as shown. (We call
4 a death state.) We can
see that an aba will take us
from any state to 4.

b

b

a
a,b

a

a

b

1

4

2

3

 Clicker Question #2

• Suppose δ*(1, w) = 4.
Which statement must be
true of w?

• (a) w = uabav for some
strings u and v

• (b) w = uaba for some u

• (c) w ∈ No-aba

• (d) w contains no bb

b

b

a
a,b

a

a

b

1

4

2

3

 Answer #2

• Suppose δ*(1, w) = 4.
Which statement must be
true of w?

• (a) w = uabav for some strings
u and v

• (b) w = uaba for some u

• (c) w ∈ No-aba

• (d) w contains no bb

b

b

a
a,b

a

a

b

1

4

2

3

 Characterizing the States

• Let L1 be the set of strings
that have no aba and don’t
end in a or ab.

• Let L2 be the set of strings
that don’t have an aba and
end in a.

• L3 is the set of strings that
don’t have an aba and end in
ab.

• L4 is the set that have aba.

b

b

a
a,b

a

a

b

1

4

2

3

 Characterizing the States
• We can make eight checks, one

for each value of δ. If δ(i, x) =
j, we check that any string in
Li, followed by the letter x,
yields a string in Lj.

• We then do an inductive
proof, where P(w) is the
statement on the previous
slide: “For all states i, δ*(1, w)
= i if and only if w ∈ Li” where
each Li is as defined there.
Thus w ∈ L(M) ↔ w ∈ No-aba.

b

b

a
a,b

a

a

b

1

4

2

3

Distinguishable Strings

• Is it possible that another DFA with only
three states could decide No-aba?

• We divided all possible strings into four sets.
Suppose a DFA reads w and does not know
which of the four sets w is in.

• We’ll show that in this case it is doomed -- for
some string x, it will be wrong if it sees x and
has to decide whether wx is in the language
No-aba.

Dinstinguishable Strings

• Look at the four strings λ, a, ab, and aba.

• If the DFA has δ*(i, λ) = δ*(i, a), we say that it
cannot distinguish between λ and a.

• If this is true, the DFA must also have δ*(i, b)
= δ*(i, ab) because a b will take the same
state to the same state.

• Then as well δ*(i, ba) = δ*(i, aba).

Distinguishable Strings

• But now we know that the DFA cannot
decide No-aba, because it gives the same
answer on the strings ba (which is in No-aba)
and aba (which is not in No-aba).

• We can call this an experiment that
distinguishes the two strings λ and a.

Clicker Question #3

• Two strings u and v are defined to be No-
aba-distinguishable if there exists a string w
such that exactly one of the strings uw and
vw are in No-aba. Which one of these pairs
of strings is No-aba-distinguishable?

• (a) {aaba, abab}

• (b) {λ, baabbabbabb}

• (c) {abbaab, abbbabb}

• (d) {abba, babbbaa}

Answer #3

• Two strings u and v are defined to be No-
aba-distinguishable if there exists a string w
such that exactly one of the strings uw and
vw are in No-aba. Which one of these pairs
of strings is No-aba-distinguishable?

• (a) {aaba, abab}

• (b) {λ, baabbabbabb}

• (c) {abbaab, abbbabb} (append a to each)

• (d) {abba, babbbaa}

Sets of Distinguishable Strings

• Let L be any language. We say that two
strings u and v are L-distinguishable (also
called L-inequivalent) if there exists a
string w such that uw ∈ L and vw ∉ L, or vice
versa.

• We call the strings L-equivalent if the
negation of this statement is true, that is, if
∀w: uw ∈ L ↔ vw ∈ L.

A Lemma on Distinguishability

• Lemma: If M is a DFA with transition
function δ, L is any language, u and v are two
L-distinguishable strings, and δ*(i, u) = δ*(i, v),
then L(M) ≠ L.

• Proof: We can prove by induction that if
δ*(i, u) = δ*(i, v), then for any string w, δ*(i,
uw) = δ*(i, vw). For the particular w that
distinguishes u and v, then, the single state
δ*(i, uw) = δ*(i, vw) needs to be both final
and non-final if L(M) = L.

A Distinguishability Theorem

• Theorem: If there exists a set of k pairwise
L-distinguishable strings, then no DFA that
decides L can have fewer than k states.

• Proof: If there are more strings than there
are states, by the Pigeonhole Principle
there must exist two L-distinguishable strings
u and v such that δ*(i, u) = δ*(i, v). In this case
the Lemma says that the DFA does not
decide L.

Languages With No DFA’s

• Consider the balanced parenthesis language
Paren, which we will write as a subset of {L,
R}* with L for left parens and R for right
parens. We can prove that there is no DFA at
all that decides this language.

• Look at the infinite set of strings {λ, L, LL,
LLL,...}. I claim that this set is pairwise Paren-
distinguishable, because if i and j are two
naturals with i ≠ j, then Li and Lj are
distinguished by Ri, since LiRi is in Paren and
LjRi is not.

Languages With No DFA’s

• So for any natural k, we can find more than k
pairwise Paren-distinguishable strings, and by
our theorem there cannot be a k-state DFA.

• Our real-life algorithm to decide Paren is to
remember the number of L’s we have seen,
minus the number of R’s. If this number ends
at 0, without ever going negative, we are in
Paren. But this requires more than constant
memory -- potentially a state for every
natural from 0 through n.

