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Deterministic Finite Automata

• We now turn to finite-state machines, a 
model of computation that captures the idea 
of reading a file of text with a fixed limit on 
the memory we can use to remember what 
we have seen.  

• In particular, the memory used must be 
constant, independent of the length of the 
file.  We ensure this by requiring our machine 
to have a finite state set, so that at any 
time during the computation all that it knows 
is which state it is in.



Deterministic Finite Automata

• The initial state is fixed.  When the 
machine sees a new letter, it changes to a 
new state based on a fixed transition 
function.  When it finishes the string, it 
gives a yes or no answer based on whether it 
is in a final state.

• Because the new state depends only on the 
old state and the letter seen, the computation 
is deterministic and the machine is called 
a deterministic finite automaton or 
DFA. 



Where We Are Going

• A DFA decides a language -- it reads a 
string over its alphabet and then answers 
“yes” or “no”.  The language of the DFA 
is the set of strings for which it says yes.

• We call a language X decidable if there 
exists a DFA whose language is X.  Later we’ll 
prove that some languages are not decidable.



Where We Are Going

• The Myhill-Nerode Theorem will give 
us a way to take an arbitrary language and 
determine whether it is decidable.

• We’ll define a particular equivalence relation 
on strings, based only on the language.  If this 
relation has a finite set of equivalence classes, 
there is a DFA for the language, and there is a 
minimal DFA with as many states as there 
are classes.  We’ll see how to compute the 
minimal DFA from any DFA for the language.



Where We Are Going

• As we’ve mentioned, there is a DFA for a 
language if and only if the language is 
regular (that is, if and only if it is the 
language denoted by some regular 
expression).  

• We’ll prove this important result, called 
Kleene’s Theorem, over several lectures.  
Our proofs will show us how to convert a 
DFA to a regular expression and vice versa.



Formal Definition of DFA’s

• Formally a DFA is defined by its state set 
S, its initial state i ∈ S, its final state set 
F ⊆ S, its input alphabet Σ, and its 
transition function δ from (S × Σ) to S.  

• We usually represent DFA’s by diagrams 
(labeled directed multigraphs) with a node for 
each state, a special mark for the initial state, 
a double circle on each final state, and an 
arrow labeled “a” from node p to node q 
whenever δ(p, a) = q.



 A DFA Example

• Here is a DFA with state 
set {1, 2, 3, 4}, initial state 
1, final state set {3}, 
alphabet {a, b}, and a 
transition function 
indicated by the arrows.

• For any string, we can 
follow the arrows for its 
letters in order.  The 
strings a, ba, and bbbaa are 
in this DFA’s language.
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 Clicker Question #1

• Which of these strings is 
not in the language of this 
DFA?

• (a) aaabababaa

• (b) bababaabaa

• (c) bbbbaaaa

• (d) abbaaba
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 Answer #1

• Which of these strings is not in 
the language of this DFA?

• (a) aaabababaa 
(1-3-1-3-2-4-2-4-2-4-3)

• (b) bababaabaa 
(1-4-3-2-4-2-4-3-2-4-3)

• (c) bbbbaaaa 
(1-4-2-2-2-4-3-1-3)

• (d) abbaaba (1-3-2-2-4-3-2-4)
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Behavior of a DFA

• The behavior function of a particular 
DFA is a function called δ* from (S × Σ*) to S, 
such that δ*(p, w) is the state of the DFA after 
it starts in state p and reads the string w.

• Formally, we say that δ*(p, λ) = p and that 
δ*(p, wa) = δ(δ*(p, w), a).  

• The language of a DFA is defined to be 
the set of strings w such that δ*(i, w) is a final 
state.  For a DFA M, we call this language 
L(M).



More Examples of DFA’s

• One of the simplest possible DFA’s decides 
the language of binary strings with an odd 
number of ones.  It has two states E and O, 
representing whether the machine has seen 
an even or odd number of ones so far.  The 
initial state is E, and the final state set is {O}.  
The transition function has δ(E, 0) = E, δ(E, 1) 
= O, δ(O, 0) = O, and δ(O, 1) = E.
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More Examples of DFA’s

• We can build a four-state DFA 
for the language EE, of strings 
with an even number of a’s and 
an even number of b’s.  

• Its states are EE, EO, OE, and 
OO.  For example, δ*(EE, w) = 
EO if w has an even number of 
a’s and an odd number of b’s.  
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More Examples of DFA’s

• Another four-state DFA can 
decide whether the next to last 
letter of a binary string w exists 
and is 1.  

• The state set is {00, 01, 10, 11} 
and the state after reading w 
represents the last two letters 
seen.  The initial state is 00 and 
the final state set is {10, 11}.
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DFA’s in Pseudo-Java

• We consider the input to be given like a file, 
with a method to give the next letter and one 
to tell when the input is done.  

• We relabel the state set and the alphabet to 
be {0,..., states - 1} and 
{0,..., letters - 1} respectively.



DFA’s in Pseudo-Java

public class DFA {
   natural states; 
   natural letters; 
   natural start;
   boolean [ ] isFinal = 
      new boolean[states];
   natural [ ] [ ] delta = 
      new natural [states] [letters];
   natural getNext( ) {code omitted}
   boolean inputDone( ) {code omitted}
 



DFA’s in Pseudo-Java

 

   boolean decide ( )
   {// returns whether input string is    
    // in the language of the DFA

      natural current = start;
      while (!inputDone( )) 
         current = 
            delta[current][getNext( )];
      return isFinal [current];}}



The States With a Behavior

• How do we prove that a particular DFA has a 
particular language?

• With the even-odd DFA, we can say that 
δ*(E, w) = E if w has an even number of ones, 
and δ*(E, w) = O if it has an odd number of 
ones.  
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The States With a Behavior

• “δ*(E, w) = E if w has an even number of ones, 
and δ*(E, w) = O if it has an odd number of 
ones.” 

• Letting P(w) be the entire statement in the 
bullet above, we can prove ∀w:P(w) by 
induction on all binary strings.  P(λ) says that 
δ*(E, λ) = E, because λ has no ones and 0 is 
even, and δ*(E, λ) = E is true by definition of δ*. 
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The States With a Behavior

• Now assume that P(w) is true, so that δ*(E, w) 
is E if w has an even number of ones and O 
otherwise.  Then w0 has the same number of 
ones as w, so δ*(E, w0) should be the same state 
as δ*(E, w).  And w1 has one more one than w, 
so δ*(E, w1) should be the other state from 
δ*(E, w).  In each of the four cases, the new state 
is the state given by the δ function of the DFA.
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 The No-aba Language

• The language No-aba is the 
set of strings that never 
have an aba substring.  

• We can build a DFA M for 
No-aba with state set {1, 2, 
3, 4}, start state 1, final state 
set {1, 2, 3}, and transition 
function as shown.  (We call 
4 a death state.)  We can 
see that an aba will take us 
from any state to 4.

b

b

a
a,b

a

a

b

1

4

2

3



 Clicker Question #2

• Suppose δ*(1, w) = 4.  
Which statement must be 
true of w? 

• (a) w = uabav for some 
strings u and v

• (b) w = uaba for some u

• (c) w ∈ No-aba

• (d) w contains no bb
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 Answer #2

• Suppose δ*(1, w) = 4.  
Which statement must be 
true of w? 

• (a) w = uabav for some strings 
u and v

• (b) w = uaba for some u

• (c) w ∈ No-aba

• (d) w contains no bb
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 Characterizing the States

• Let L1 be the set of strings 
that have no aba and don’t 
end in a or ab.  

• Let L2 be the set of strings 
that don’t have an aba and 
end in a.  

• L3 is the set of strings that 
don’t have an aba and end in 
ab.

• L4 is the set that have aba.
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 Characterizing the States
• We can make eight checks, one 

for each value of δ.  If δ(i, x) = 
j, we check that any string in 
Li, followed by the letter x, 
yields a string in Lj. 

• We then do an inductive 
proof, where P(w) is the 
statement on the previous 
slide:  “For all states i, δ*(1, w) 
= i if and only if w ∈ Li” where 
each Li is as defined there.  
Thus w ∈ L(M) ↔ w ∈ No-aba.
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Distinguishable Strings

• Is it possible that another DFA with only 
three states could decide No-aba?

• We divided all possible strings into four sets.  
Suppose a DFA reads w and does not know 
which of the four sets w is in.  

• We’ll show that in this case it is doomed -- for 
some string x, it will be wrong if it sees x and 
has to decide whether wx is in the language 
No-aba.



Dinstinguishable Strings

• Look at the four strings λ, a, ab, and aba.  

• If the DFA has δ*(i, λ) = δ*(i, a), we say that it 
cannot distinguish between λ and a.  

• If this is true, the DFA must also have δ*(i, b) 
= δ*(i, ab) because a b will take the same 
state to the same state.  

• Then as well δ*(i, ba) = δ*(i, aba).



Distinguishable Strings

• But now we know that the DFA cannot 
decide No-aba, because it gives the same 
answer on the strings ba (which is in No-aba) 
and aba (which is not in No-aba).

• We can call this an experiment that 
distinguishes the two strings λ and a.



Clicker Question #3

• Two strings u and v are defined to be No-
aba-distinguishable if there exists a string w 
such that exactly one of the strings uw and 
vw are in No-aba.  Which one of these pairs 
of strings is No-aba-distinguishable?

• (a) {aaba, abab}

• (b) {λ, baabbabbabb}  

• (c) {abbaab, abbbabb}

• (d) {abba, babbbaa}



Answer #3

• Two strings u and v are defined to be No-
aba-distinguishable if there exists a string w 
such that exactly one of the strings uw and 
vw are in No-aba.  Which one of these pairs 
of strings is No-aba-distinguishable?

• (a) {aaba, abab}

• (b) {λ, baabbabbabb}  

• (c) {abbaab, abbbabb} (append a to each)

• (d) {abba, babbbaa}



Sets of Distinguishable Strings

• Let L be any language.  We say that two 
strings u and v are L-distinguishable (also 
called L-inequivalent) if there exists a 
string w such that uw ∈ L and vw ∉ L, or vice 
versa.  

• We call the strings L-equivalent if the 
negation of this statement is true, that is, if 
∀w: uw ∈ L ↔ vw ∈ L.



A Lemma on Distinguishability

• Lemma: If M is a DFA with transition 
function δ, L is any language, u and v are two 
L-distinguishable strings, and δ*(i, u) = δ*(i, v), 
then L(M) ≠ L.

• Proof:  We can prove by induction that if 
δ*(i, u) = δ*(i, v), then for any string w, δ*(i, 
uw) = δ*(i, vw).  For the particular w that 
distinguishes u and v, then, the single state 
δ*(i, uw) = δ*(i, vw) needs to be both final 
and non-final if L(M) = L.



A Distinguishability Theorem

• Theorem: If there exists a set of k pairwise 
L-distinguishable strings, then no DFA that 
decides L can have fewer than k states.

• Proof:  If there are more strings than there 
are states, by the Pigeonhole Principle 
there must exist two L-distinguishable strings 
u and v such that δ*(i, u) = δ*(i, v). In this case 
the Lemma says that the DFA does not 
decide L.



Languages With No DFA’s

• Consider the balanced parenthesis language 
Paren, which we will write as a subset of {L, 
R}* with L for left parens and R for right 
parens.  We can prove that there is no DFA at 
all that decides this language.

• Look at the infinite set of strings {λ, L, LL, 
LLL,...}.  I claim that this set is pairwise Paren-
distinguishable, because if i and j are two 
naturals with i ≠ j, then Li  and Lj are 
distinguished by Ri, since LiRi  is in Paren and 
LjRi is not.



Languages With No DFA’s

• So for any natural k, we can find more than k 
pairwise Paren-distinguishable strings, and by 
our theorem there cannot be a k-state DFA.

• Our real-life algorithm to decide Paren is to 
remember the number of L’s we have seen, 
minus the number of R’s.  If this number ends 
at 0, without ever going negative, we are in 
Paren.  But this requires more than constant 
memory -- potentially a state for every 
natural from 0 through n.


