CMPSCI 250: Introduction to
Computation

Lecture #30: Properties of the Regular Languages
David Mix Barrington
|3 November 2013

Properties of Regular Languages

® Induction on Regular Expressions

The One’s Complement Operation

® Proving Our Function Correct

The Pseudo-Java RegExp Class

The One’s Complement Method
® Reversal of Languages

® Testing for the Empty Language

Induction on Regular Expressions

® Because the regular languages have an
inductive definition, we can prove
propositions for all of them by induction.

® Let P(R) be a predicate with one free variable
of type “regular expression”. We can prove
that P(R) holds for any regular expression R
by proving two base cases and three inductive
cases.

Induction on Expressions

® These five cases are:

® P(2),

® P@a)forallac 2,

* (PR) A P(S)) = PR +5),
® (P(R) A P(S)) = P(RS),and
* PR) — P(R)

Induction on Expressions

® For example, we will define two operations
on languages and show that the regular
languages are closed under these
operations.

® That is, if R is a regular expression, the result
of applying the operation to L(R) gives us
another regular language. We’ll demonstrate
an algorithm to compute this expression.

® We'll also show that we can test properties
of R, such as whether L(R) = @.

One’s Complement

The one’s complement of a binary string
w, denoted oc(w), is the string of the same
length obtained by replacing all 0’s with I’s
and all I’s with O’s. For example, oc(011001)
= 1001 10.

We can define oc(w) inductively, of course:
oc(A) = A,
oc(w0) = oc(w)l,and

oc(wl) = oc(w)O0.

One’s Complement

® The one’s complement of a language X is the
language {oc(w): w € X} -- the set of strings
whose one’s complements are in X.

® We will prove that for any regular expression
R, the language oc(L(R)) is a regular language.

® |t’s not hard to see how to convert R into a
regular expression for oc(L(R)). We just
replace O’s with I’s and |’s with O’s in R itself.

One’s Complement

Formally this is a recursive algorithm:

oc(¥) = g,
oc(0) = I,
oc(l) =0,

oc(R + S) = oc(R) + oc(S),
oc(RS) = oc(R)oc(S), and
oc(R") = oc(R)".

Proving Our Function Correct

® We will use induction to prove that this
function f, from regular expressions to regular
expressions, satisfies the property “L(f(R)) =
oc(L(R))”. We wrrite this property as “P(R)”.

® P(2) says that L(@) = oc(L(2)), which is true

because {oc(w):w € @} = @.

® P(0) says “L(1) = oc(L(0))” and P(1l) says “L(0)
= oc(L(1))”, both of which are true.

Proving Our Function Correct

® Assume that P(R) and P(S) are true, so that
L(f(R)) = oc(L(R)) and L(f(S)) = oc(L(S)).

® We must show that L(f(R)) u L(f(S)) = oc(L(R

+5)), that L(f(R))L(f(S)) = oc(L(RS)), and that
L(f(R))" = oc(L(R")).

® Each of these three facts follow pretty
directly from the definitions -- details are in
the textbook.

Clicker Question #I

® Suppose | am formally proving the statement “oc(ST)
= oc(S)oc(T)”. | let w be an arbitrary string. Which
statement about w will suffice to complete my proof?

® (a) Vu:vv: (oc(uv) € ST) « ((oc(u) € S) A (oc(v) €T))

® (b) Ju:av: (w = uv) A (oc(uv) = oc(w))

® (c) (oc(w) € ST) « Ju:av: (oc(u) € S) A (oc(v) €T) A
(W = uv)

® (d) vu:vv:vw: oc(uvw) = oc(u)oc(v)oc(w)

Answer #l

® Suppose | am formally proving the statement “oc(ST)
= oc(S)oc(T)”. | let w be an arbitrary string. Which
statement about w will suffice to complete my proof?

® (a) Vu:vv: (oc(uv) € ST) « ((oc(u) € S) A (oc(v) €T))

® (b) Ju:3v: (w = uv) A (oc(uv) = oc(w))

® (c) (oc(w) € ST) < Ju:av: (oc(u) € S) A (oc(v) €T) A (W
= uv)

® (d) Vu:vv:vw: oc(uvw) = oc(u)oc(v)oc(w)

A Java RegExp Class

® Just as boolean or arithmetic expressions can
be implemented by tree structures, we can
define a real Java class RegExp whose
objects are regular expressions.

® We will need methods to parse these
objects, which means that they must
determine their structure and component
parts.

A Java RegExp Class

® public class RegExp {

public RegExp();

// returns RegExp equal to emptyset
public RegExp(String w);

// returns RegExp denoted by w
public boolean isEmptySet();

// is it the empty set?
public boolean isZero();

// is it “0"?
public boolean isOne();

// is it “1"?
public boolean isUnion();

// is it “s + T"?

A Java RegExp Class

public boolean isCat();

// is it “sT"?
public boolean isStar();

// is is “S*"?
public RegExp firstArg();
public RegExp secondArg();
public static RegExp

plus (RegExp r, RegExp s);
public static RegExp

cat (RegExp r, RegExp s);
public static RegExp

star (RegExp r);

Computing One’s Complement

® This definition lets us write code for the one’s
complement algorithm. The next slide has a
recursive method that creates a RegExp object
with the same structure as the method’s
argument, but with 0’s and I’s switched.

® We've essentially proved this method correct by
our usual method for recursive code -- we
prove the base cases correct and then prove the
rest correct assuming that the recursive calls are
correct.

Computing One’s Complement

public static RegExp f (RegExp s) {
if (s.isEmpty())
return new RegExp();
if (s.isZero())
return new RegExp(“1”);

if (s.isOne())
return new RegExp(“0”);
RegExp oct = £ (s.firstArg());

if (s.isStar()) return star(oct);
RegExp ocu = f (s.secondArg());
is (s.isPlus())

return plus (oct, ocu);
else return cat (oct, ocu);}

// s.isCat() must be true here

Reversal of Languages

® A similar function from languages to
languages is reversal, based on the familiar

reversal operation on strings: for any language
X, XR ={wh:w e X}.

® The regular languages are closed under
reversal -- we can easily see that @R = @ and

that aR = a for any letter a. The string rule
(xy)R = yRxR yields a language rule (TU)R =
URTR, and we have (T+U)R =TR + UR and
(TR =(T9)"

Computing Reversal

public static RegExp rev (RegExp s) {
if (s.isEmpty()) return new RegExp();
if (s.isZero())
return new RegExp(“0");
if (s.isOne())
return new RegExp(“1”);

RegExp trev = rev (s.firstArg());
if (s.isStar()) return star (trev);
RegExp urev = rev (s.secondArg());
if (s.isPlus())

return plus (trev, urev);
else return cat (urev, trev);}
// s.isCat() is true in this case

Clicker Question #2

The code for the method rev contains the
line return cat (urev, trev); for the
case where s is a concatenation. What would
happen if we changed this line to return
cat (trev, urev);!

(a) rev would get caught in an infinite loop

(b) rev would return the same expression it
returned before

(c) rev would return the calling expression

(d) the new code would compile but not run

Answer #2

The code for the method rev contains the
line return cat (urev, trev); for the
case where s is a concatenation. What would
happen if we changed this line to return
cat (trev, urev);!

(a) rev would get caught in an infinite loop

(b) rev would return the same expression it
returned before

(c) rev would return the calling expression

(d) the new code would compile but not run

Testing for the Empty Language

® The regular expression “@” denotes the

empty language, but so do other regular
expressions like a(b+a)*(@ + a"@)(bb)".

® Exercise 5.5.4 asks you to write a method
that takes a RegExp object R and returns a
boolean that is true if and only if L(R) = @.

Testing for the Empty Language

® We solve the problem recursively.

® For the base cases, we should return true
on & and return false on any letter a.

® [f R and S are two regular expressions, L(R +
S) is empty if and only if both L(R) and L(S)
are empty, and L(RS) is empty if and only if
either L(R) or L(S) is empty.

® And of course L(R") is never empty.

Testing Properties of Expressions

® A similar problem is to tell whether L(R) =
{A}, or whether A € L(R). Each of these may

be solved by a recursive algorithm, because

we know whether the property holds in the
base cases, and how it behaves with respect
to the three operations.

® But telling whether L(R) = 2" is much harder,
because L(R + S) could equal 2" in so many
different ways.

Clicker Question #3

® Given a regular expression R, | would like to
compute whether A € L(R). Which of these

potential steps in an inductive definition of
this property is invalid?

e a)Ae S
e b) AeST) o> (AeS) VvV (AeT))

® c)AeS+T)o(AeS)V(AeT))

o (d) (A ea) A (A e D)

Answer #3

® Given a regular expression R, | would like to
compute whether A € L(R). Which of these

potential steps in an inductive definition of
this property is invalid?

e a)Ae S
® b)(AeST) o (AeS) VvV (NeT)

® c)AeS+T)o(AeS)V(AeT))

o (d) (A ea) A (A e D)

