
CMPSCI 250: Introduction to 
Computation

Lecture #30: Properties of the Regular Languages
David Mix Barrington
13 November 2013



Properties of Regular Languages

• Induction on Regular Expressions

• The One’s Complement Operation

• Proving Our Function Correct

• The Pseudo-Java RegExp Class

• The One’s Complement Method

• Reversal of Languages

• Testing for the Empty Language



Induction on Regular Expressions

• Because the regular languages have an 
inductive definition, we can prove 
propositions for all of them by induction.

• Let P(R) be a predicate with one free variable 
of type “regular expression”.  We can prove 
that P(R) holds for any regular expression R 
by proving two base cases and three inductive 
cases.



Induction on Expressions

• These five cases are:

• P(∅), 

• P(a) for all a ∈ Σ, 

• (P(R) ∧ P(S)) → P(R + S), 

• (P(R) ∧ P(S)) → P(RS), and 

• P(R) → P(R*)



Induction on Expressions

• For example, we will define two operations 
on languages and show that the regular 
languages are closed under these 
operations.  

• That is, if R is a regular expression, the result 
of applying the operation to L(R) gives us 
another regular language.  We’ll demonstrate 
an algorithm to compute this expression.

• We’ll also show that we can test properties 
of R, such as whether L(R) = ∅.



One’s Complement 

• The one’s complement of a binary string 
w, denoted oc(w), is the string of the same 
length obtained by replacing all 0’s with 1’s 
and all 1’s with 0’s.  For example, oc(011001) 
= 100110.  

• We can define oc(w) inductively, of course: 

• oc(λ) = λ, 

• oc(w0) = oc(w)1, and 

• oc(w1) = oc(w)0.



One’s Complement

• The one’s complement of a language X is the 
language {oc(w): w ∈ X} -- the set of strings 
whose one’s complements are in X.  

• We will prove that for any regular expression 
R, the language oc(L(R)) is a regular language.

• It’s not hard to see how to convert R into a 
regular expression for oc(L(R)).  We just 
replace 0’s with 1’s and 1’s with 0’s in R itself.



One’s Complement

• Formally this is a recursive algorithm: 

• oc(∅) = ∅, 

• oc(0) = 1, 

• oc(1) = 0, 

• oc(R + S) = oc(R) + oc(S), 

• oc(RS) = oc(R)oc(S), and 

• oc(R*) = oc(R)*.



Proving Our Function Correct

• We will use induction to prove that this 
function f, from regular expressions to regular 
expressions, satisfies the property “L(f(R)) = 
oc(L(R))”.  We write this property as “P(R)”.

• P(∅) says that L(∅) = oc(L(∅)), which is true 
because {oc(w): w ∈ ∅} = ∅.

• P(0) says “L(1) = oc(L(0))” and P(1) says “L(0) 
= oc(L(1))”, both of which are true.



Proving Our Function Correct

• Assume that P(R) and P(S) are true, so that 
L(f(R)) = oc(L(R)) and L(f(S)) = oc(L(S)).  

• We must show that L(f(R)) ∪ L(f(S)) = oc(L(R
+S)), that L(f(R))L(f(S)) = oc(L(RS)), and that 
L(f(R))* = oc(L(R*)).

• Each of these three facts follow pretty 
directly from the definitions -- details are in 
the textbook.



Clicker Question #1

• Suppose I am formally proving the statement “oc(ST) 
= oc(S)oc(T)”.  I let w be an arbitrary string.  Which 
statement about w will suffice to complete my proof?

• (a) ∀u:∀v: (oc(uv) ∈ ST) ↔ ((oc(u) ∈ S) ⋀ (oc(v) ∈T))

• (b) ∃u:∃v: (w = uv) ⋀ (oc(uv) = oc(w))

• (c) (oc(w) ∈ ST) ↔ ∃u:∃v: (oc(u) ∈ S) ⋀ (oc(v) ∈ T) ⋀ 

(w = uv)

• (d) ∀u:∀v:∀w: oc(uvw) = oc(u)oc(v)oc(w)



Answer #1

• Suppose I am formally proving the statement “oc(ST) 
= oc(S)oc(T)”.  I let w be an arbitrary string.  Which 
statement about w will suffice to complete my proof?

• (a) ∀u:∀v: (oc(uv) ∈ ST) ↔ ((oc(u) ∈ S) ⋀ (oc(v) ∈T))

• (b) ∃u:∃v: (w = uv) ⋀ (oc(uv) = oc(w))

• (c) (oc(w) ∈ ST) ↔ ∃u:∃v: (oc(u) ∈ S) ⋀ (oc(v) ∈ T) ⋀ (w 

= uv)

• (d) ∀u:∀v:∀w: oc(uvw) = oc(u)oc(v)oc(w)



A Java RegExp Class

• Just as boolean or arithmetic expressions can 
be implemented by tree structures, we can 
define a real Java class RegExp whose 
objects are regular expressions.  

• We will need methods to parse these 
objects, which means that they must 
determine their structure and component 
parts.



A Java RegExp Class
• public class RegExp {

   public RegExp( ); 
     // returns RegExp equal to emptyset
   public RegExp(String w); 
     // returns RegExp denoted by w
   public boolean isEmptySet( ); 
     // is it the empty set?
   public boolean isZero( ); 
     // is it “0”?
   public boolean isOne( ); 
     // is it “1”?
   public boolean isUnion( ); 
     // is it “S + T”?



A Java RegExp Class

    public boolean isCat( ); 
     // is it “ST”?
   public boolean isStar( ); 
     // is is “S*”?
   public RegExp firstArg( );
   public RegExp secondArg( );
   public static RegExp 
     plus (RegExp r, RegExp s);
   public static RegExp 
     cat (RegExp r, RegExp s);
   public static RegExp 
     star (RegExp r);



Computing One’s Complement

• This definition lets us write code for the one’s 
complement algorithm.  The next slide has a 
recursive method that creates a RegExp object 
with the same structure as the method’s 
argument, but with 0’s and 1’s switched.

• We’ve essentially proved this method correct by 
our usual method for recursive code -- we 
prove the base cases correct and then prove the 
rest correct assuming that the recursive calls are 
correct.



Computing One’s Complement
public static RegExp f (RegExp s) {
   if (s.isEmpty( )) 
      return new RegExp( );
   if (s.isZero( )) 
      return new RegExp(“1”);
   if (s.isOne( )) 
      return new RegExp(“0”);
   RegExp oct = f (s.firstArg( ));
   if (s.isStar( )) return star(oct);
   RegExp ocu = f (s.secondArg( ));
   is (s.isPlus( )) 
      return plus (oct, ocu);
   else return cat (oct, ocu);} 
      // s.isCat( ) must be true here



Reversal of Languages

• A similar function from languages to 
languages is reversal, based on the familiar 
reversal operation on strings: for any language 
X, XR = {wR: w ∈ X}.

• The regular languages are closed under 
reversal -- we can easily see that ∅R = ∅ and 
that aR = a for any letter a.  The string rule 
(xy)R = yRxR yields a language rule (TU)R = 
URTR, and we have (T+U)R = TR + UR and 
(T*)R = (TR)*.



Computing Reversal

public static RegExp rev (RegExp s) {
   if (s.isEmpty( )) return new RegExp( );
   if (s.isZero( )) 
      return new RegExp(“0”);
   if (s.isOne( )) 
      return new RegExp(“1”);
   RegExp trev = rev (s.firstArg( ));
   if (s.isStar( )) return star (trev);
   RegExp urev = rev (s.secondArg( ));
   if (s.isPlus( )) 
      return plus (trev, urev);
   else return cat (urev, trev);} 
      // s.isCat( ) is true in this case



Clicker Question #2
• The code for the method rev contains the 

line return cat (urev, trev); for the 
case where s is a concatenation.  What would 
happen if we changed this line to return 
cat (trev, urev);?

• (a) rev would get caught in an infinite loop

• (b) rev would return the same expression it 
returned before

• (c) rev would return the calling expression 

• (d) the new code would compile but not run



Answer #2
• The code for the method rev contains the 

line return cat (urev, trev); for the 
case where s is a concatenation.  What would 
happen if we changed this line to return 
cat (trev, urev);?

• (a) rev would get caught in an infinite loop

• (b) rev would return the same expression it 
returned before

• (c) rev would return the calling expression 

• (d) the new code would compile but not run



Testing for the Empty Language

• The regular expression “∅” denotes the 
empty language, but so do other regular 
expressions like a(b+a)*(∅ + a*∅)(bb)*.

• Exercise 5.5.4 asks you to write a method 
that takes a RegExp object R and returns a 
boolean that is true if and only if L(R) = ∅.



Testing for the Empty Language

• We solve the problem recursively.  

• For the base cases, we should return true 
on ∅ and return false on any letter a.  

• If R and S are two regular expressions, L(R + 
S) is empty if and only if both L(R) and L(S) 
are empty, and L(RS) is empty if and only if 
either L(R) or L(S) is empty.  

• And of course L(R*) is never empty.



Testing Properties of Expressions

• A similar problem is to tell whether L(R) = 
{λ}, or whether λ ∈ L(R).  Each of these may 
be solved by a recursive algorithm, because 
we know whether the property holds in the 
base cases, and how it behaves with respect 
to the three operations.

• But telling whether L(R) = Σ* is much harder, 
because L(R + S) could equal Σ* in so many 
different ways.  



Clicker Question #3

• Given a regular expression R, I would like to 
compute whether λ ∈ L(R).  Which of these 
potential steps in an inductive definition of 
this property is invalid?

• (a) λ ∈ S*

• (b) (λ ∈ ST) ↔ ((λ ∈ S) ⋁ (λ ∈ T))

• (c) (λ ∈ S + T) ↔ ((λ ∈ S) ⋁ (λ ∈ T))

• (d) ¬(λ ∈ a) ⋀ ¬(λ ∈ ∅)



Answer #3

• Given a regular expression R, I would like to 
compute whether λ ∈ L(R).  Which of these 
potential steps in an inductive definition of 
this property is invalid?

• (a) λ ∈ S*

• (b) (λ ∈ ST) ↔ ((λ ∈ S) ⋁ (λ ∈ T))

• (c) (λ ∈ S + T) ↔ ((λ ∈ S) ⋁ (λ ∈ T))

• (d) ¬(λ ∈ a) ⋀ ¬(λ ∈ ∅)


