
CMPSCI 250: Introduction to
Computation

Lecture #27: Games and Adversary Search
David Mix Barrington
4 November 2013

Games and Adversary Search

• Review: A* Search

• Modeling Two-Player Games

• When There is a Game Tree

• The Determinacy Theorem

• Searching a Game Tree

• Examples of Games

Review: A* Search

• The A* Search depends on a
heuristic function, which
is a lower bound on the
distance to the goal.

• If x is a node, and g is the
nearest goal node to x, the
admissibility condition
on h is that 0 ≤ h(x) ≤ d(x, g).

h(y) = 6

s
x

h(z) = 3

23
2

4

p(y) = 23 + 2 + 6 = 31

p(z) = 23 + 4 + 3 = 30

Review: A* Search
• Suppose we have taken y off of

the open list. The best-path
distance from the start s to the
goal g through y is d(s, y) + d(y,
g), and this cannot be less than
d(s, y) + h(y).

• Thus when we find a path of
length k from s to y, we put y
onto the open list with priority k
+ h(y). We still record the
distance d(s, y) when we take y
off of the open list.

h(y) = 6

s
x

h(z) = 3

23
2

4

p(y) = 23 + 2 + 6 = 31

p(z) = 23 + 4 + 3 = 30

Review: A* Search
• The advantage of A* over

uniform-cost search is that we do
not consider entries x in the
closed list for which d(s, x) + h(x)
is greater than the actual best-
path distance from s to g.

• This is because when we find the
best path to g with length d(s, g),
we will put g on the open list
with priority d(s, g) + h(g) = d(s,
g) and it will come off before any
node with higher priority value.

h(y) = 6

s
x

h(z) = 3

23
2

4

p(y) = 23 + 2 + 6 = 31

p(z) = 23 + 4 + 3 = 30

The 15 Puzzle

• The 15-puzzle is a 4 × 4 grid of
pieces with one missing, and the
goal is to put them in a certain
arrangement by repeatedly sliding
a piece into the hole.

• We can imagine a graph where
nodes are positions and edges
represent legal moves.

Figure from
en.wikipedia.org
“Fifteen puzzle”

The 15 Puzzle
• In order to move from a given

position to the goal, each piece
must move at least the Manhattan
distance from its current position
to its goal position.

• The sum of all these Manhattan
distances gives us an admissible,
consistent heuristic for the actual
minimum number of moves to
reach the goal. So an A* search
will be faster than a uniform-cost
search.

Figure from
en.wikipedia.org
“Fifteen puzzle”

Clicker Question #1
• We define the distance to the goal state in the

15 puzzle as the number of moves needed to
reach it. Which of these functions of a position
would not be an admissible heuristic for this
problem?

• (a) the number of moves taken by a DFS

• (b) the number of pieces not in the right place

• (c) the sum, over all pieces, of the Manhattan
distances of that piece from its right place

• (d) 0 for the goal state, 1 for anything else

Answer #1
• We define the distance to the goal state in the

15 puzzle as the number of moves needed to
reach it. Which of these functions of a position
would not be an admissible heuristic for this
problem?

• (a) the number of moves taken by a DFS

• (b) the number of pieces not in the right place

• (c) the sum, over all pieces, of the Manhattan
distance of that piece from its right place

• (d) 0 for the goal state, 1 for anything else

Modeling Two-Player Games
• There are many kinds of games, and we are now

going to look at a theory which will let us model
and analyze some of them.

• You probably know that the game of tic-tac-toe
is not very interesting to play, because if both
players are familiar with the game the result is
always a draw.

• There is a strategy for the first player, X, that allows
her to always win or draw. There is also a strategy
for O, the second player, letting him win or draw. If
both players play these strategies, there is a draw.

Modeling Two-Player Games

• Any game that shares certain particular
features of tic-tac-toe is determined in the
same way.

• We must have sequential moves, two
players, a deterministic game with no
randomness, a zero-sum game, and
perfect information.

• In these cases we can model the game by a
game tree.

Game Trees

• A game tree has a node for
every possible state or
position of the game. The
root node represents the
start position.

• A node y is a child of a node
x if it is possible, according
to the rules of the game, to
get to y from x in one move.

B WW W

W B

Game Trees

• Every node is labelled by
whose turn it is.

• Usually the two players
alternate moves, so we can
call them the first and
second player (White and
Black), but our analysis will
not change if one player can
make several moves in a
row.

B WW W

W B

Game Trees

• The leaves of the tree
represent positions where the
result of the game is known.

• We label leaves with a real
number indicating how much
White is paid by Black,
typically 1 for a White win, 0
for a draw, and -1 for a Black
win, but any real number
values are possible.

-1 +1+1 +1

+1 -1

Clicker Question #2

• Who wins the game
represented to the right, if
both players play optimally?

• (a) White wins with either
first move

• (b) White wins if and only if
she takes the left move

• (c) White wins if and only if
she takes the right move

• (d) Black wins

-1 +1+1 +1+1 -1-1-1

Answer #2

• Who wins the game
represented to the right, if
both players play optimally?

• (a) White wins with either
first move

• (b) White wins if and only if
she takes the left move

• (c) White wins if and only if she
takes the right move

• (d) Black wins

-1 +1+1 +1+1 -1-1-1

When We Have a Game Tree

• To be represented by such a tree the game
must be discrete, deterministic, zero-
sum, and have perfect information.

• The tree is finite if there are only finitely
many sequences of moves that can ever
occur. We could have a finite game graph
where nodes can be reached in more than
one way or even revisited, but we won’t
analyze these here.

The Determinacy Theorem

• Each leaf has a game value, the real
number we defined above. We can
inductively assign a game value to every node
of the tree, by the following rules.

• The value val(s) of a final position is its label.

• If White is to move in position s, val(s) is the
maximum value of any child of s.

• If Black is to move in position s, val(s) is the
minimum value of any child of s.

The Determinacy Theorem

• The Determinacy Theorem says that:

• (1) any game given by a finite tree has a game
value v (the value of the root given by the
definition above),

• (2) White has a strategy that guarantees her a
result of at least v, and

• (3) Black has a strategy that guarantees him
that the result will be at most v. Thus v is the
result if both players play optimally.

Proving Determinacy

• We prove that for each node x in the tree,
each player has a strategy that gets them
either a result of val(x) or a result that is
even better for them.

• If x is a leaf of the tree this is obvious.

• If it is White’s move she can move to the
child with value val(x), and by the IH get at
least this result.

• It’s just the same if Black is to move.

Clicker Question #3

• What is the value of the game
represented to the right?

• (a) -2

• (b) 0

• (c) 3

• (d) 7
-2 0-2 0+3 -2-2+7

Answer #3

• What is the value of the game
represented to the right?

• (a) -2

• (b) 0

• (c) 3

• (d) 7
-2 0-2 0+3 -2-2+7

+3

+3 0

00+3+7

Winning Tic-Tac-Toe

• The chart to the right, if it
were big enough to read,
would tell you complete
strategies for each player
guaranteeing a result of 0 (a
draw) or better.

xkcd.com/832

Winning Tic-Tac-Toe

• The X strategy starts with
moving to the top left, then
has a reply to each of the
eight O moves that could
follow, then a reply to each of
the six possible O responses
to that move, and so on.

• The desired moves are in red.

xkcd.com/832

Winning Tic-Tac-Toe

• The O strategy must have
responses to all nine initial X
moves, then to all seven X
responses to each of those
moves, and so on.

• The messiest parts of the
chart is where the game goes
for all nine moves, since each
board is 1/9 the area of the
last.

xkcd.com/832

Searching a Game Tree

• The Determinacy Theorem only tells us that
these optimal strategies exist, not that they
are possible to implement.

• If it is possible to calculate the game
value of any node, then choosing the right
move is easy. And we have a recursive
algorithm to compute the game value, so
what is the problem?

• The tree could be really really big.

Adversary Search

• An exhaustive adversary search computes the
exact value.

• If we can’t do that, we need an estimate of
the game value.

• In Chess, for example, we can evaluate
material and some positional facts to get a
good idea whether one position is better
than another.

Adversary Search

• We can then use finite lookahead, playing
a game that ends in k moves, where the
payoff is the estimated value of the position
at the end of those k moves.

• Alpha-beta pruning, which we won’t do
in this course, is a way to improve the search.
But the required time is still usually
exponential in the number of moves to go.

Examples of Games

• In 1965, my father’s M.S.
thesis was to build a tic-
tac-toe program that
learned from its mistakes.

• By 1992, and probably
earlier, students in CMPSCI
187 could build a winning
program that exhaustively
searched the game tree on
every move.

xkcd.com/1002

Examples of Games

• There is either a winning
strategy for White in
Chess, or a drawing
strategy for Black. But no
one knows which is true.

• Current Chess programs
succeed by doing a better
job of searching and
evaluating positions.

xkcd.com/1002

Examples of Games

• Computers don’t approach
chess the way good human
players do. We can use
games as benchmarks for
AI achievement.

• Checkers is easier than
Chess, and Go is harder.

• Calvinball (from Calvin and
Hobbes) allows rules to be
changed at will.

xkcd.com/1002

