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Review:  A* Search

• The A* Search depends on a 
heuristic function, which 
is a lower bound on the 
distance to the goal.  

• If x is a node, and g is the 
nearest goal node to x, the 
admissibility condition 
on h is that 0 ≤ h(x) ≤ d(x, g).
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Review:  A* Search
• Suppose we have taken y off of 

the open list.  The best-path 
distance from the start s to the 
goal g through y  is d(s, y) + d(y, 
g), and this cannot be less than 
d(s, y) + h(y).  

• Thus when we find a path of 
length k from s to y, we put y 
onto the open list with priority k 
+ h(y).  We still record the 
distance d(s, y) when we take y 
off of the open list.
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Review:  A* Search
• The advantage of A* over 

uniform-cost search is that we do 
not consider entries x in the 
closed list for which d(s, x) + h(x) 
is greater than the actual best-
path distance from s to g.  

• This is because when we find the 
best path to g with length d(s, g), 
we will put g on the open list 
with priority d(s, g) + h(g) = d(s, 
g) and it will come off before any 
node with higher priority value.
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The 15 Puzzle

• The 15-puzzle is a 4 × 4 grid of 
pieces with one missing, and the 
goal is to put them in a certain 
arrangement by repeatedly sliding 
a piece into the hole. 

• We can imagine a graph where 
nodes are positions and edges 
represent legal moves. 

Figure from 
en.wikipedia.org
“Fifteen puzzle”



The 15 Puzzle
• In order to move from a given 

position to the goal, each piece 
must move at least the Manhattan 
distance from its current position 
to its goal position. 

• The sum of all these Manhattan 
distances gives us an admissible, 
consistent heuristic for the actual 
minimum number of moves to 
reach the goal.  So an A* search 
will be faster than a uniform-cost 
search.

Figure from 
en.wikipedia.org
“Fifteen puzzle”



Clicker Question #1
• We define the distance to the goal state in the 

15 puzzle as the number of moves needed to 
reach it.  Which of these functions of a position 
would not be an admissible heuristic for this 
problem?

• (a) the number of moves taken by a DFS

• (b) the number of pieces not in the right place

• (c) the sum, over all pieces, of the Manhattan 
distances of that piece from its right place

• (d) 0 for the goal state, 1 for anything else



Answer #1
• We define the distance to the goal state in the 

15 puzzle as the number of moves needed to 
reach it.  Which of these functions of a position 
would not be an admissible heuristic for this 
problem?

• (a) the number of moves taken by a DFS

• (b) the number of pieces not in the right place

• (c) the sum, over all pieces, of the Manhattan 
distance of that piece from its right place

• (d) 0 for the goal state, 1 for anything else



Modeling Two-Player Games
• There are many kinds of games, and we are now 

going to look at a theory which will let us model 
and analyze some of them.

• You probably know that the game of tic-tac-toe 
is not very interesting to play, because if both 
players are familiar with the game the result is 
always a draw. 

• There is a strategy for the first player, X, that allows 
her to always win or draw.  There is also a strategy 
for O, the second player, letting him win or draw.  If 
both players play these strategies, there is a draw.



Modeling Two-Player Games

• Any game that shares certain particular 
features of tic-tac-toe is determined in the 
same way.  

• We must have sequential moves, two 
players, a deterministic game with no 
randomness, a zero-sum game, and 
perfect information.

• In these cases we can model the game by a 
game tree.



Game Trees

• A game tree has a node for 
every possible state or 
position of the game.  The 
root node represents the 
start position.  

• A node y is a child of a node 
x if it is possible, according 
to the rules of the game, to 
get to y from x in one move.

B WW W
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Game Trees

• Every node is labelled by 
whose turn it is.  

• Usually the two players 
alternate moves, so we can 
call them the first and 
second player (White and 
Black), but our analysis will 
not change if one player can 
make several moves in a 
row.  

B WW W

W B



Game Trees

• The leaves of the tree 
represent positions where the 
result of the game is known.  

• We label leaves with a real 
number indicating how much 
White is paid by Black, 
typically 1 for a White win, 0 
for a draw, and -1 for a Black 
win, but any real number 
values are possible.

-1 +1+1 +1

+1 -1



Clicker Question #2

• Who wins the game 
represented to the right, if 
both players play optimally?

• (a) White wins with either 
first move

• (b) White wins if and only if 
she takes the left move

• (c) White wins if and only if 
she takes the right move

• (d) Black wins

-1 +1+1 +1+1 -1-1-1



Answer #2

• Who wins the game 
represented to the right, if 
both players play optimally?

• (a) White wins with either 
first move

• (b) White wins if and only if 
she takes the left move

• (c) White wins if and only if she 
takes the right move

• (d) Black wins

-1 +1+1 +1+1 -1-1-1



When We Have a Game Tree

• To be represented by such a tree the game 
must be discrete, deterministic, zero-
sum, and have perfect information.  

• The tree is finite if there are only finitely 
many sequences of moves that can ever 
occur.  We could have a finite game graph 
where nodes can be reached in more than 
one way or even revisited, but we won’t 
analyze these here.



The Determinacy Theorem

• Each leaf has a game value, the real 
number we defined above.  We can 
inductively assign a game value to every node 
of the tree, by the following rules. 

• The value val(s) of a final position is its label.

• If White is to move in position s, val(s) is the 
maximum value of any child of s.  

• If Black is to move in position s, val(s) is the 
minimum value of any child of s.



The Determinacy Theorem

• The Determinacy Theorem says that:

• (1) any game given by a finite tree has a game 
value v (the value of the root given by the 
definition above), 

• (2) White has a strategy that guarantees her a 
result of at least v, and 

• (3) Black has a strategy that guarantees him 
that the result will be at most v.  Thus v is the 
result if both players play optimally.



Proving Determinacy

• We prove that for each node x in the tree, 
each player has a strategy that gets them 
either a result of val(x) or a result that is 
even better for them.  

• If x is a leaf of the tree this is obvious.  

• If it is White’s move she can move to the 
child with value val(x), and by the IH get at 
least this result.  

• It’s just the same if Black is to move.



Clicker Question #3

• What is the value of the game 
represented to the right?

• (a) -2

• (b) 0

• (c) 3

• (d) 7
-2 0-2 0+3 -2-2+7



Answer #3

• What is the value of the game 
represented to the right?

• (a) -2

• (b) 0

• (c) 3

• (d) 7
-2 0-2 0+3 -2-2+7

+3

+3 0

00+3+7



Winning Tic-Tac-Toe

• The chart to the right, if it 
were big enough to read, 
would tell you complete 
strategies for each player 
guaranteeing a result of 0 (a 
draw) or better.

xkcd.com/832



Winning Tic-Tac-Toe

• The X strategy starts with 
moving to the top left, then 
has a reply to each of the 
eight O moves that could 
follow, then a reply to each of 
the six possible O responses 
to that move, and so on.  

• The desired moves are in red.

xkcd.com/832



Winning Tic-Tac-Toe

• The O strategy must have 
responses to all nine initial X 
moves, then to all seven X 
responses to each of those 
moves, and so on.  

• The messiest parts of the 
chart is where the game goes 
for all nine moves, since each 
board is 1/9 the area of the 
last.

xkcd.com/832



Searching a Game Tree

• The Determinacy Theorem only tells us that 
these optimal strategies exist, not that they 
are possible to implement.

• If it is possible to calculate the game 
value of any node, then choosing the right 
move is easy.  And we have a recursive 
algorithm to compute the game value, so 
what is the problem? 

• The tree could be really really big.  



Adversary Search

• An exhaustive adversary search computes the 
exact value.  

• If we can’t do that, we need an estimate of 
the game value.  

• In Chess, for example, we can evaluate 
material and some positional facts to get a 
good idea whether one position is better 
than another.



Adversary Search

• We can then use finite lookahead, playing 
a game that ends in k moves, where the 
payoff is the estimated value of the position 
at the end of those k moves.

• Alpha-beta pruning, which we won’t do 
in this course, is a way to improve the search.  
But the required time is still usually 
exponential in the number of moves to go.



Examples of Games

• In 1965, my father’s M.S. 
thesis was to build a tic-
tac-toe program that 
learned from its mistakes.

• By 1992, and probably 
earlier, students in CMPSCI 
187 could build a winning 
program that exhaustively 
searched the game tree on 
every move.

xkcd.com/1002



Examples of Games

• There is either a winning 
strategy for White in 
Chess, or a drawing 
strategy for Black.  But no 
one knows which is true.  

• Current Chess programs 
succeed by doing a better 
job of searching and 
evaluating positions.  

xkcd.com/1002



Examples of Games

• Computers don’t approach 
chess the way good human 
players do.  We can use 
games as benchmarks for 
AI achievement.

• Checkers is easier than 
Chess, and Go is harder.

• Calvinball (from Calvin and 
Hobbes) allows rules to be 
changed at will.

xkcd.com/1002


