CMPSCI 250: Introduction to Computation

Lecture #27: Games and Adversary Search David Mix Barrington 4 November 2013

Games and Adversary Search

- Review: A* Search
- Modeling Two-Player Games
- When There is a Game Tree
- The Determinacy Theorem
- Searching a Game Tree
- Examples of Games

The 15 Puzzle

• The 15-puzzle is a 4 × 4 grid of pieces with one missing, and the goal is to put them in a certain arrangement by repeatedly sliding a piece into the hole.

Figure from en.wikipedia.org "Fifteen puzzle"

• We can imagine a graph where nodes are positions and edges represent legal moves.

The 15 Puzzle

- In order to move from a given position to the goal, each piece must move at least the Manhattan distance from its current position to its goal position.
- The sum of all these Manhattan distances gives us an admissible, consistent heuristic for the actual minimum number of moves to reach the goal. So an A* search will be faster than a uniform-cost search.

Figure from en.wikipedia.org "Fifteen puzzle"

Clicker Question #I

- We define the distance to the goal state in the 15 puzzle as the number of moves needed to reach it. Which of these functions of a position would *not* be an admissible heuristic for this problem?
- (a) the number of moves taken by a DFS
- (b) the number of pieces not in the right place
- (c) the sum, over all pieces, of the Manhattan distances of that piece from its right place
- (d) 0 for the goal state, I for anything else

Answer #I

- We define the distance to the goal state in the 15 puzzle as the number of moves needed to reach it. Which of these functions of a position would *not* be an admissible heuristic for this problem?
- (a) the number of moves taken by a DFS
- (b) the number of pieces not in the right place
- (c) the sum, over all pieces, of the Manhattan distance of that piece from its right place
- (d) 0 for the goal state, I for anything else

Modeling Two-Player Games

- There are many kinds of games, and we are now going to look at a theory which will let us model and analyze some of them.
- You probably know that the game of **tic-tac-toe** is not very interesting to play, because if both players are familiar with the game the result is always a draw.
- There is a strategy for the first player, X, that allows her to always win or draw. There is also a strategy for O, the second player, letting him win or draw. If both players play these strategies, there is a draw.

Modeling Two-Player Games

- Any game that shares certain particular features of tic-tac-toe is **determined** in the same way.
- We must have sequential moves, two players, a deterministic game with no randomness, a zero-sum game, and perfect information.
- In these cases we can model the game by a game tree.

Game Trees

- The **leaves** of the tree represent positions where the **result** of the game is known.
- We label leaves with a real number indicating how much White is paid by Black, typically I for a White win, 0 for a draw, and -I for a Black win, but any real number values are possible.

Clicker Question #2

- Who wins the game represented to the right, if both players play optimally?
- (a) White wins with either first move
- (b) White wins if and only if she takes the left move
- (c) White wins if and only if she takes the right move
- (d) Black wins

Answer #2

- Who wins the game represented to the right, if both players play optimally?
- (a) White wins with either first move
- (b) White wins if and only if she takes the left move
- (c) White wins if and only if she takes the right move
- (d) Black wins

When We Have a Game Tree

- To be represented by such a tree the game must be **discrete**, **deterministic**, **zero-sum**, and have **perfect information**.
- The tree is **finite** if there are only finitely many sequences of moves that can ever occur. We could have a finite **game graph** where nodes can be reached in more than one way or even revisited, but we won't analyze these here.

The Determinacy Theorem

- Each leaf has a **game value**, the real number we defined above. We can inductively assign a game value to *every node* of the tree, by the following rules.
- The value val(s) of a final position is its label.
- If White is to move in position s, val(s) is the *maximum* value of any child of s.
- If Black is to move in position s, val(s) is the *minimum* value of any child of s.

The Determinacy Theorem

- The **Determinacy Theorem** says that:
- (1) any game given by a finite tree has a game value v (the value of the root given by the definition above),
- (2) White has a strategy that guarantees her a result of *at least* v, and
- (3) Black has a strategy that guarantees him that the result will be *at most* v. Thus v is the result if both players play *optimally*.

Proving Determinacy

- We prove that for each node x in the tree, each player has a strategy that gets them either a result of val(x) or a result that is even better for them.
- If x is a leaf of the tree this is obvious.
- If it is White's move she can move to the child with value val(x), and by the IH get at least this result.
- It's just the same if Black is to move.

Winning Tic-Tac-Toe

- The O strategy must have responses to all nine initial X moves, then to all seven X responses to each of those moves, and so on.
- The messiest parts of the chart is where the game goes for all nine moves, since each board is 1/9 the area of the last.

Searching a Game Tree

- The Determinacy Theorem only tells us that these optimal strategies exist, not that they are possible to implement.
- If it is possible to **calculate the game value** of any node, then choosing the right move is easy. And we have a recursive algorithm to compute the game value, so what is the problem?
- The tree could be really really big.

Adversary Search

- An exhaustive adversary search computes the exact value.
- If we can't do that, we need an **estimate** of the game value.
- In Chess, for example, we can evaluate material and some positional facts to get a good idea whether one position is better than another.

Adversary Search

- We can then use **finite lookahead**, playing a game that ends in k moves, where the payoff is the estimated value of the position at the end of those k moves.
- Alpha-beta pruning, which we won't do in this course, is a way to improve the search. But the required time is still usually exponential in the number of moves to go.

Examples of Games

- There is either a winning strategy for White in Chess, or a drawing strategy for Black. But no one knows which is true.
- Current Chess programs succeed by doing a better job of searching and evaluating positions.

DIFFICULTY OF VARIOUS GAMES FOR COMPUTERS
SOLVED COMPUTER ONLY RAY CORFECTION
SAUED FAR SARTING PROTINGS (CHERNERS) (2007)
COMPUTERS CAN BEAT TOP HUMANS COMPUTERS STILL LOSE TO TOP HUMANS
(UIT PROJECT ARD COLUD GIVINGE THE) (COMPUTERS MAY NEVER VITTE ON HIM MAINS
COTFLIAT FIOT IANS (CALVINBALL]
xkcd.com/1002

Examples of Games

- Computers don't approach chess the way good human players do. We can use games as benchmarks for Al achievement.
- Checkers is easier than Chess, and Go is harder.
- Calvinball (from *Calvin and Hobbes*) allows rules to be changed at will.

DIFFICULTY OF VARIOUS GAMES EAGY FOR COMPUTERS
SOLVED COMPTER CAN POSITIONS SOLVED COMPTER CAN SOLVED COMPETER TRUE SOLVED
SAVED FOR SARTING POSTIONS (<u>CPEDRERS</u> (2007)
COMPUTERS CAN BEAT TOP HUMANS
COMPUTERS STILL LOSE TO TOP HUMANS (BUT FOLKED RAD (CULD UNKEE THK)
COMPUTERS MAY NEVER OUTPLAY HUMANS (AVINBALL)
HARD
xkcd.com/1002