
CMPSCI 250: Introduction to
Computation

Lecture #25: DFS and BFS on Graphs
David Mix Barrington
30 October 2013

DFS and BFS on Graphs

• Storing the Entire Search Space

• The DFS Tree of a Undirected Graph

• The DFS Tree of a Directed Graph

• Four Kinds of Edges

• The BFS Tree of a Undirected Graph

• The BFS Tree of a Directed Graph

Storing the Entire Search Space

• In CMPSCI 311 you’ll spend considerable time
on search problems where the entire graph is
given to you, usually as an adjacency list
where for each node we have a list of the edges
out of it.

• Given two nodes s and t in the graph, we can
ask whether there is a path from s to t, how
long the shortest path from s to t might be
(measured by number of edges or measured by
the total cost of the edges), or whether s and t
remain connected if certain edges are deleted.

Storing the Entire Search Space

• With the whole graph stored (or using a
closed list to remember what we’ve seen), we
avoid processing the same node twice.

• Both DFS and BFS on graphs will allow us to
create a tree from the graph, which will
allow us to address these various problems
more easily.

DFS Trees of Undirected Graphs

• Recall that our DFS algorithm places nodes
onto a stack when they are discovered, and
processes all their edges when they are taken
off the stack.

• Our DFS tree will have a tree edge from s
to t if we encounter t for the first time while
we are processing s, that is, if we discover t
through its edge from s. The tree edges form
a tree that gives a path from the start node
to each node that is reachable from it.

DFS Trees of Undirected Graphs

• If we defined the DFS recursively, the DFS
tree would be essentially the call tree,
because if (s, t) were a tree edge we would
make the recursive call with parameter t in
the course of processing the call with
parameter s.

• A DFS of an undirected graph searches the
entire connected component of the
start node. What can we tell about the edges
that aren’t tree edges?

Tree Edges and Back Edges

• Let G be a connected
undirected graph and let T
be its DFS tree.

• If G were a graph-theoretic
tree, T and G would be the
same graph (more precisely,
T would be the rooted tree
made from G with the start
node as root).

A CB

D E

B

A C

D

E

Tree Edges and Back Edges

• But if while processing node s, we find an
edge to a node t that is not new, that edge
does not go into T. (We’ll ignore the reverse
directions of tree edges.)

• Note that the processing of t must still be
going on at this point, because we don’t finish
processing t until we’ve finished all the nodes
reachable from it, including s. So t must be an
ancestor of s in the tree, and the edge (s, t)
is thus called a back edge.

Tree Edges and Back Edges

• Here’s an example where the
undirected graph G becomes
a rooted tree T together
with some back edges.

• An articulation point is
a node whose removal
disconnects the graph. Can
you tell what condition on
the tree and back edges
makes t such a point?

BA

D

C

FE

G

A

D

G

C

E

B

F

Clicker Question #1

• Which condition on the DFS tree of an
undirected graph will prevent node X from
being an articulation point?

• (a) Every child of X has an ancestor with an
edge to a descendent of X.

• (b) Every child of X has a descendent with an
edge to an ancestor of X.

• (c) X is the root and has more than one child.

• (d) X has a back edge to an ancestor of X.

Answer #1

• Which condition on the DFS tree of an
undirected graph will prevent node X from
being an articulation point?

• (a) Every child of X has an ancestor with an
edge to a descendent of X.

• (b) Every child of X has a descendent with an
edge to an ancestor of X.

• (c) X is the root and has more than one child.

• (d) X has a back edge to an ancestor of X.

DFS Trees of Directed Graphs

• When we make a DFS of a
directed graph, we still reach every
node that is reachable from the
start node.

• But it’s no longer guaranteed that
any or all of those nodes have
paths back to the start point -- we
no longer necessarily have a
connected component to search.

A

CB

C

BA

Strongly Connected Components

• Problem 9.6.2 (not assigned this term) has you
work out how to use the DFS algorithm to find
the strongly connected components of
a directed graph -- the equivalence classes of
the equivalence relation P(x, y) ⋀ P(y, x).

• If there is a back edge from a node t to an
ancestor u, then all the nodes on the tree path
from u down to t are in the same strongly
connected component because they lie on a
directed cycle.

DFS of a Directed Graph

• In a directed graph we can no longer
guarantee that all the edges are either tree
edges or back edges -- what are the other
possibilities?

• Let (u, v) be an arbitrary edge in a directed
graph G. In what different ways could (u, v)
be encountered in a DFS of G?

Tree and Forward Edges

• If we find u before v and
first find v through the edge
(u, v), it is a tree edge.

• If we find u before v, but
find v through one of its
siblings before we look at
the edge (u, v), then (u, v)
becomes a forward edge
from u to a descendant.

A

B D

C

E

D

B

E

C

A

Back and Cross Edges

• If we find v before u, and find
u while we are still
processing v, then the edge
(u, v) becomes a back edge
just as in the undirected case.

• If we find v before u and
finish v before finding u
(because there is no path
from v to u), then (u, v)
becomes a cross edge.

A

B D

C

E

D

B

E

C

A

Clicker Question #2

• What type of edge will
the green edge become,
if we do a DFS from A
and always take
neighbors alphabetically?

• (a) tree edge

• (b) back edge

• (c) forward edge

• (d) cross edge

A

DC

B

Answer #2

• What type of edge will
the green edge become,
if we do a DFS from A
and always take
neighbors alphabetically?

• (a) tree edge

• (b) back edge

• (c) forward edge

• (d) cross edge

A

DC

B

BFS Trees of Undirected Graphs

• A breadth-first search gives rise to tree edges
in the same way -- (u, v) is a tree edge if we
encounter v during the processing of u, and
put v on the queue.

• The BFS tree is made up of all the tree
edges, and is a rooted tree giving a shortest
path (in number of edges) from the start
node to each edge.

• If there are multiple shortest paths, the
algorithm will choose one as the tree path.

BFS Trees of Undirected Graphs

• If u is at level k of the tree, and (u, v) is a non-
tree edge, we know that v has already been
put on the queue before the edge is seen.

• If it is still on the queue, it must be also at
level k.

• If it has been finished, it must be at level k-1,
because otherwise (in an undirected graph)
we would have missed a shorter path from
the start node to u by way of v.

Bipartite Graphs

• An undirected graph is
bipartite if and only if
we never get an edge from
one node to another at
the same level.

• This follows from the
theorem that an
undirected graph is
bipartite if and only if it has
no odd-length cycles.)

F

A

C

B

B

E D

A

D

E

C

F

A

C

B

E

D F

Clicker Question #3

• Let G be a connected undirected graph. Three of
these conditions on G are equivalent -- which
one is different from the others?

• (a) If x and y are nodes, the paths from x to y are
either all even length or all odd length.

• (b) G has no triangles (i.e., no cycles of length 3).

• (c) G is bipartite.

• (d) The nodes of G can be two-colored so that
no edge has two endpoints of the same color.

Answer #3

• Let G be a connected undirected graph. Three of
these conditions on G are equivalent -- which
one is different from the others?

• (a) If x and y are nodes, the paths from x to y are
either all even length or all odd length.

• (b) G has no triangles (i.e., no cycles of length 3).

• (c) G is bipartite.

• (d) The nodes of G can be two-colored so that
no edge has two endpoints of the same color.

BFS Trees of Directed Graphs

• In a BFS of a directed graph, the BFS tree will
arrange the nodes into levels, based on their
shortest-path distance from the start node
(where again “shortest” means “fewest
edges”).

• If u is at level k and we find v for the first
time while processing u, then (u, v) will be a
tree edge and v will be at level k + 1.

BFS Trees of Directed Graphs

• But if v has already been seen, it might be at
any existing level of the tree from 0 to k or
even k + 1, or might even not be in the tree
at all!

• Remember that if a DFS or BFS finishes
without reaching all the nodes, we start a
new tree at a new start point. The node v
might be in an earlier tree (which didn’t
contain a path to u), but still have an edge
from u.

