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Strings and String Operations

• Peano Axioms for Strings

• Pseudo-Java for the string Class

• Defining the String Operations

• Proof By Induction For Strings

• Concatenating Strings Adds Lengths

• Concatenation is Associative

• Reversal of a Concatenation



Peano Axioms for Strings

• We define our string data type for any fixed 
alphabet Σ by induction, just as we defined 
the naturals.  

• The basic way to make new strings from old 
is by appending a letter to a string.  

• We can define five “Peano axioms” for 
strings, which are much like the Peano axioms 
for the naturals.



Peano Axioms for Strings
• 1.  λ is a string.

• 2. If w is a string and a is a letter in Σ, then wa 
is a string.

• 3. If wa and vb are the same string, then w = v 
and a = b (i.e., no string is formed by 
appending in two different ways).

• 4. Any string other than λ is equal to wa for 
some string w and letter a.

• 5. The only strings are those made from λ by 
the second axiom.



The Pseudo-Java string class

• We can think of our string operations as 
being built up from basic string methods in 
our pseudo-Java programming language. 

• Remember that unlike real Java String 
objects, pseudo-Java string values are 
primitives.

• We have a method to test whether a string is 
empty, a method to append a letter, and two 
“inverses” for the append operation. 



The Pseudo-Java string class
• The inverse methods throw an exception if 

called on an empty string.  If called on a string 
wa, last returns a, the last letter, and 
allButLast returns the string w.

public static boolean isEmpty( ){...}

public static string append (string w, char 
                             a) {...}

public static char last (string w) {...}

public static string allButLast (string w) 
{...}



Clicker Question #1

• What does this method return on input “abca”?

• (a) ‘!’

• (b) ‘a’

• (c) ‘b’

• (d) ‘c’ 

public static char foo (string w) {
   if (isEmpty(w)) return ‘!’;
   w = allButLast(w);
   if (isEmpty(w)) return ‘!’;
   return last(w);}



Answer #1

• What does this method return on input “abca”?

• (a) ‘!’

• (b) ‘a’

• (c) ‘b’

• (d) ‘c’ 

public static char foo (string w) {
   if (isEmpty(w)) return ‘!’;
   w = allButLast(w);
   if (isEmpty(w)) return ‘!’;
   return last(w);}



Defining String Operations

• We defined operations on naturals 
recursively, first saying what the operation 
does with argument 0 and then defining what 
argument n+1 does based on what argument 
n does.  

• Here we can do much the same thing for 
strings.

• Each operation comes from a simple 
recursive definition.



Length and Concatenation

• The code for these methods follows fairly 
directly from the inductive definitions.

public static natural length (string w) {
   if (isEmpty(w)) return 0;
   return  
      successor(length(allButLast(w)));}

public static string cat (string w, string  
                          x) {
   if (isEmpty(x)) return w;
   return append
      (cat(w, allButLast(x)), last(x));}



The Code for Reversal

• There’s two interesting wrinkles in this code 
for the reversal operation.

• We need the cat operation to be defined.

• Since cat takes two string arguments, 
we have an implicit type cast from the 
character last(w) to a string.

public static string rev (string w) {
   if (isEmpty(w)) return w;
   return cat(last(w),
              rev(allButLast(w)));}



Clicker Question #2

• What is the output of this method on input 
“dog”?

• (a) “gd”

• (b) “good”

• (c) “doggod”

• (d) no output, exception is thrown

public static string mix (string w) {
   return cat(allButLast(rev(w)),
              rev(allButLast(w)));}



Answer #2

• What is the output of this method on input 
“dog”?

• (a) “gd”

• (b) “good”

• (c) “doggod”

• (d) no output, exception is thrown

public static string mix (string w) {
   return cat(allButLast(rev(w)),
              rev(allButLast(w)));}



Proof by Induction for Strings

• As we noted above, an alternate version of the 
fifth Peano Axiom for strings allows us to 
prove statements of the form ∀x: P(x), where x 
is of type string, by induction on all strings.

• We need a base case of P(λ), and then an 
inductive case for each letter a in Σ, of the 
form ∀w: P(w) → P(wa).  

• With binary strings we must prove P(w) → 
P(w0) and P(w) → P(w1) for arbitrary w (or 
just prove P(w) → (P(w0) ∧ P(w1)).



Proof By Induction for Strings

• Each of our recursive definitions defines 
f(wa), for example, in terms of f(w).  

• So if we can phrase our statement P(w) so 
that it talks about f(w), then information 
about f(w) should be useful in talking about 
f(wa) when we prove P(wa).

• We’ll finish the lecture by doing three such 
inductive proofs.



Concatenation Adds Lengths

• Our first proof relates a string operation to an 
operation on naturals.  

• When we concatenate two strings, we add 
their lengths.  Let’s prove the statement ∀u: ∀v: 
|uv| = |u| + |v|, where we use “|u|” to mean the 
length of u.

• We let u be an arbitrary string and use string 
induction on v.  

• The statement P(v) is “|uv| = |u| + |v|”, or 
“length(cat(u, v)) == plus(length(u), length(v))”.



Concatenation Adds Lengths

• The base case P(λ) says that |uλ| = |u| + |λ|, 
which is true because the definitions tell us 
that uλ = u, |λ| = 0, and |u| = |u| + 0.

• We assume P(v) and look at P(va), which says 
|u(va)| = |u| + |va|.  

• To prove this we will need to use the 
inductive clauses of two recursive definitions, 
that of concatenation and that of length.



Concatenation Adds Lengths

• The definition of concatenation says that u(va) 
= (uv)a, and the definition of length then says 
that |u(va)| = |(uv)a| = successor(|uv|). 

•  The definition of length says that |va| = 
successor(|v|), and the definition of addition 
says that |u| + successor(|v|) = successor(|u| + 
|v|).  

• We finish by using the IH to replace |uv| by |u| 
+ |v|.  This completes the inductive step for 
arbitrary v and a.



Clicker Question #3

• Let Σ = {a, b,..., z}.  Define a function cardie(w) 
from Σ* to Σ* by the rules cardie(λ) = λ and for 
any string w and any letter a, cardie(wa) = cat(“z”, 
cardie(w)).  What does this function do?

• (a) returns a string of z’s with the same length as w

• (b) returns the reversal of w

• (c) returns λ for any w

• (d) returns “z” for any w



Answer #3

• Let Σ = {a, b,..., z}.  Define a function cardie(w) 
from Σ* to Σ* by the rules cardie(λ) = λ and for 
any string w and any letter a, cardie(wa) = cat(“z”, 
cardie(w)).  What does this function do?

• (a) returns a string of z’s with the same length as w

• (b) returns the reversal of w

• (c) returns λ for any w

• (d) returns “z” for any w



Concatenation is Associative

• Now we prove ∀u:∀v:∀w: (uv)w = u(vw), 
where we use parentheses to indicate the 
order of operations.  We let u and v be 
arbitrary, and use string induction on w with 
P(w) as “(uv)w = u(vw)” or “cat(cat(u, v), w) 
== cat(u, cat(v, w))”.

• The base case P(λ) is “(uv)λ = u(vλ)”, which 
reduces to uv = uv by the definition of 
concatenating with λ.



Concatenation is Associative
• We assume P(w) and try to prove P(wa), 

which says “(uv)(wa) = u(v(wa))”.  (Again we 
must be careful of notation, as we are using 
the same notation for appending and 
concatenation.)  

• The LHS is ((uv)w)a, and the RHS is u((vw)a) 
which we can convert to (u(vw))a, each time 
using the definition of concatenation.  

• The IH of “(uv)w = u(vw)” now lets us prove 
that the LHS equals the RHS, by appending an 
a to each side of this equation.



Reversal of a Concatenation

• Finally we prove the rule relating reversal and 
concatenation, the statement ∀u:∀v:(uv)R = 
(vR)(uR).  (For example, (“bulldog”)R = 
(“dog”)R(“bull”)R = “godllub”.)  We’ll let u be 
arbitrary and use string induction on v.

• The base case P(λ) is “(uλ)R = λRuR”.  We can 
prove this with the rules uλ = u and λR = λ, 
and the theorem λu = u, which is easy to 
prove by induction on u.



Reversal of a Concatenation
• So we assume P(v), “(uv)R = vRuR”, and try to prove 

P(va), “(u(va))R = (va)RuR”. 

• The LHS is ((uv)a)R by the definition of 
concatenation, and a(uv)R by the definition of 
reversal.  (Note that this last is the concatenation of 
the two strings a and (uv)R.)

•  The RHS is (avR)uR by the definition of reversal, and 
then a(vRuR) by associativity of concatenation from 
the previous slide.  We can now equate these forms 
of the LHS and the RHS by using the IH once.  This 
completes the inductive step and thus also the proof.


