
CMPSCI 250: Introduction to
Computation

Lecture #2: Propositions and Boolean Operators
David Mix Barrington
6 September 2013

Propositions and Operators

• What is a Proposition?

• Java Boolean Variables

• Boolean Operators, Compound Propositions

• AND, OR, NOT, and XOR

• Implication and Equivalence

• Tautologies

What is a Proposition?

• A proposition is a statement that is either
true or false.

• In mathematics we want to reason about
statements like “x = 5” or “these two
triangles are congruent” without knowing
whether they are true or false. We could say
“if x = 5, then x2 = 25”, or “if one length and
all three angles are the same, then the
triangles are congruent”.

More about propositions

• In computing we reason with assertions
about a program, like “if this method
terminates, the value of i is positive”.
Ultimately we’d like to say “if the input is as
specified, then the output is as specified”,
meaning “the program is correct”.

• What isn’t a proposition? Questions,
commands, statements without meaning,
paradoxes like “this statement is false”, or
incompletely specified statements.

Java Boolean Values

• Java has a primitive boolean data type, and
every boolean has either the value true or
the value false.

• We use booleans in the conditions for if or
while statements -- if we write “if (x >
4) y = 5;”, then the statement “y = 5”
will be executed only if the boolean value “x
> 4” evaluates to true at run time.

Java Boolean Operators

• The operators ==, !=, >, >=, <, and <=
create boolean values from values of other
types. We often write methods that return
boolean values, or use existing boolean
methods like equals. We’ll soon see
operators that make new booleans from old.

• You may think of a “proposition” as any
statement that could be modeled by a boolean
variable. Of course, propositions may be
about anything, not just computer data.

Making Compound Propositions

• A compound proposition is a
proposition that is made up from other
propositions, called atomic propositions,
using boolean operators.

• If I say “you must have MATH 132, and either
CMPSCI 187 or ECE 242”, we can define
three atomic propositions and write this as a
compound proposition. We let x represent
“you have MATH 132”, y be “you have
CMPSCI 187, and z be “you have ECE 242”.

• Now my statement can be written “x, and
either y or z”. Symbolically, we write this as
“x ∧ (y ∨ z)”.

• If x, y, and z are any three booleans, the truth
of x ∧ (y ∨ z) depends on which of x, y, and z
are true. In Java, if x, y, and z are boolean
variables, we can write the expression x &&
(y || z), and this represents x ∧ (y ∨ z).

• This is the propositional calculus.

AND and OR

• If x and y are any two propositions, their
conjunction x ∧ y is the proposition that is
true if and only if both x and y are true. We
read it “x and y”. The Java operators & and
&& both compute the value of a conjunction
-- we usually use && which only evaluates the
second argument if it is needed.

• The disjunction of x and y is written x ∨ y,
read “x or y”, and is true if either is true, or
both. In Java the disjunction is | or ||.

Practice Clicker Question #1

• Let p be “dogs like beef”, q be “cats like tuna”, and
r be “pigs like mud”. Which of the following
English statements matches “(q ∧ p) ∨ (r ∧ q)”?

• (a) Cats like tuna and dogs like beef, or pigs like
mud and cats like tuna, or both.

• (b) Dogs like beef or pigs like mud, or both.

• (c) If pigs like mud, then so do both dogs and cats.

• (d) Either cats like tuna or dogs like beef, and
either pigs like mud or cats like tuna.

Answer #1

• Let p be “dogs like beef”, q be “cats like tuna”, and
r be “pigs like mud”. Which of the following
English statements matches “(q ∧ p) ∨ (r ∧ q)”?

• (a) Cats like tuna and dogs like beef, or pigs like
mud and cats like tuna, or both.

• (b) Dogs like beef or pigs like mud, or both.

• (c) If pigs like mud, then so do both dogs and cats.

• (d) Either cats like tuna or dogs like beef, and
either pigs like mud or cats like tuna.

NOT and XOR

• The negation of x is written ¬x, is read
“not x”, and is true when x is false and false
when x is true. In Java the negation operator
is !.

• The exclusive or of x and y is written x ⊕
y, read “x exclusive or y” or “x or y, but not
both”, and is true if one of x and y is true and
the other false. In Java we can write x ^ y to
compute the exclusive or of x and y.

Implication

• The last two boolean operators we will define
are implication and equivalence. These
are important in mathematics because each
expresses a relationship between propositions
that we often want to prove.

• The implication x → y is read “if x, then y” or
“x implies y”. It is true if either x is false or y is
true. Equivalently, it is true unless x is true and
y is false. It’s important to learn this formal
definition, whatever you think “if” means.

Practice Clicker Question #2
• Let p be “frogs are green” and q be “trout live

in trees”. Which English sentence does not
mean the same as “¬p → ¬q”?

• (a) It is not the case that frogs are not green
and trout live in trees.

• (b) If frogs are green, then trout live in trees.

• (c) If frogs are not green, then trout do not
live in trees.

• (d) Either frogs are green or trout do not live
in trees.

Answer #2
• Let p be “frogs are green” and q be “trout live

in trees”. Which English sentence does not
mean the same as “¬p → ¬q”?

• (a) It is not the case that frogs are not green
and trout live in trees.

• (b) If frogs are green, then trout live in trees.

• (c) If frogs are not green, then trout do not
live in trees.

• (d) Either frogs are green or trout do not live
in trees.

false implies anything

• Normally in mathematics we want to make
some assumptions and prove that some
must be true if the assumptions are true. This
is an implication.

• Given our rule, from any false proposition we
can prove anything else. Bertrand Russell
gave an example of a proof of “I am Elvis”
from the premise “0 = 1”. (“1 = 2 by
arithmetic, Elvis and I are two people, thus
Elvis and I are one person”.)

Equivalence

• Two boolean values are equivalent if they
are both true or both false. If x and y are
propositions, x ↔ y is the proposition that x

and y are equivalent. We can write this this in
Java as x == y.

• We are often interested in the equivalence of
two compound propositions with the same
atomic propositions. For example, “x → y”
and “¬x ∨ y” are equivalent.

More on Equivalence

• How do we know this? They are each true in
three of the four possible cases -- they are
false only if x is true and y is false. They have
the same truth tables, as we will soon see.

• As in Java, we have rules for precedence of
operations. Negation is first, then the
operators ∧, ∨, and ⊕, then the operators →
and ↔. So we can write our equivalence of x

→ y and ¬x ∨ y as the single compound
proposition (x → y) ↔ (¬x ∨ y).

Tautologies

• This compound proposition (x → y) ↔ ¬x ∨

y is true in all four possible situations of truth
values for x and y, so it is always true. We call
such a compound proposition a tautology.

• In the next lecture we will learn a systematic
method to show that a compound
proposition is a tautology, by checking all the
possible combinations of values of its atomic
propositions.

The Bigger Picture

• Next week we will see how to use particular
tautologies as rules, chaining them together
to verify larger tautologies without having to
check all the possible cases.

• If there are many atomic propositions, this
may be the only feasible way to verify the
tautology. Remember that if there are k
atomic propositions, there are 2k possible
cases!

The Bigger Picture

• In mathematics, our central task with boolean
values turns out to be verifying that particular
implications or equivalences are tautologies.

• Verifying x → y means that if we assume x,
we may conclude y.

• Verifying x ↔ y means that x and y are in

effect the same compound proposition.

