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Equivalence Relations

• Definition of Equivalence Relations

• Two More Examples: Universal and Parity

• The Graph of an Equivalence Relation

• Partitions and the Partition Theorem

• “Same-Set” on a Partition is an E.R.

• Equivalence Classes

• The Classes Form a Partition



Defining an Equivalence Relation

• Last lecture we looked at partial orders, 
which are reflexive, antisymmetric, and 
transitive.  Today we look at equivalence 
relations: binary relations on a set that are 
reflexive, symmetric, and transitive.

• Recall the definitions:  R is reflexive if ∀x: 
R(x, x), R is symmetric if ∀x: ∀y: R(x, y) → 
R(y, x)), and R is transitive if ∀x: ∀y: ∀z: 
(R(x, y) ∧ R(y, z)) → R(x, z).



Defining an Equivalence Relation

• You should be familiar with these properties 
of the equality relation: “x = x” is always true, 
from “x = y” we can get “y = x”, and we know 
that if x = y and y = z, then x = z.  The idea of 
equivalence relations is to formalize the 
property of acting like equality in this way.

• To prove that a relation is an equivalence 
relation, we formally need to use the Rule of 
Generalization, though we often skip steps if 
they are obvious.



Some Equivalence Relations

• If A is any set, we can define the universal 
relation U on A to always be true.  Formally, 
U is the entire set A × A consisting of all 
possible ordered pairs.

• Of course U(x, x) is always true, and the 
implications in the definitions of symmetry 
and transitivity are always true because their 
conclusions are true.

• The always false relation ¬U (or ∅) is 
symmetric and transitive but not reflexive.



More Equivalence Relations

• The parity relation on naturals is perhaps 
more interesting.  We define P(i, j) to be true 
if i and j are either both even or both odd.  
Later we’ll call this “being congruent modulo 
2” and we’ll define “being congruent modulo 
n” in general.

• Any relation of the form “x and y are the 
same in this respect” will normally be 
reflexive, symmetric, and transitive, and thus 
be an equivalence relation.



Clicker Question #1

• Let S be the set of the fifty United States.  
Which of these is not an equivalence relation?

• (a) A(x, y): state x and state y have the same 
number of representatives in the US House

• (b) B(x, y): state x and state y are equal

• (c) C(x, y): state x and state y are equal or 
share a land border

• (d) D(x, y): state x and state y have the same 
first letter in their names



Answer #1

• Let S be the set of the fifty United States.  
Which of these is not an equivalence relation?

• (a) A(x, y): state x and state y have the same 
number of representatives in the US House

• (b) B(x, y): state x and state y are equal

• (c) C(x, y): state x and state y share a land 
border

• (d) D(x, y): state x and state y have the same 
first letter in their names



Graphs of Equivalence Relations

• What happens when we draw the diagram of 
an equivalence relation?  

• Because it is reflexive, we have a loop on 
every vertex, but we can leave those out for 
clarity.  The arrows are bidirectional because 
the relation is symmetric.  

• The effect of transitivity on the diagram is a 
bit harder to see.



Complete Graphs

• If we have a set of points that have 
some connection from each point to 
each other point, transitivity forces us 
to have all possible direct connections 
among those points.  

• A graph with all possible undirected 
edges is called a complete graph on 
its points.  The graph of an equivalence 
relation has a complete graph for each 
connected component.



Partitions

• We’ve claimed a characterization of the graph 
of any equivalence relation in terms of 
complete graphs.  Let’s now prove that this 
characterization is correct -- we will need a 
new definition.

• If A is any set, a partition of A is a set of 
subsets of A -- a set P = {S1, S2,..., Sk} where 
(1) each Si is a subset of A, (2) the union of all 
the Si’s is A, and (3) the sets are pairwise 
disjoint -- ∀i: ∀j: (i ≠ j) → (Si ∩ Sj = ∅).



Clicker Question #2
• Which of these collections of sets is not a 

partition of the set S of fifty U.S. states?

• (a) {Xα: Xα is the set of all states whose names 
contain the letter α}

• (b) {{x}: x is a state}

• (c) {Xi:  Xi is the set of all states with exactly i 
representatives in the US House}

• (d) {{x: x was a state in 1800}, {x: x became a 
state during 1801-1900}, {x: x became a state 
after 1900}}



Answer #2
• Which of these collections of sets is not a 

partition of the set S of fifty U.S. states?

• (a) {Xα: Xα is the set of all states whose names 
contain the letter α}

• (b) {{x}: x is a state}

• (c) {Xi:  Xi is the set of all states with exactly i 
representatives in the US House}

• (d) {{x: x was a state in 1800}, {x: x became a 
state during 1801-1900}, {x: x became a state 
after 1900}}



The Partition Theorem

• The Partition Theorem relates 
equivalence relations to partitions.  It says 
that a relation is an equivalence relation if and 
only if it is the “same-set” relation of some 
partition.  In symbols, the same-set relation of 
P is given by the predicate SS(x, y) defined to 
be true if ∃i: (x ∈ Si) ∧ (y ∈ Si).

• So we need to get a partition from any 
equivalence relation, and an equivalence 
relation from any partition.



“Same-Set” is an E.R.

• Let P = {S1, S2,..., Sk} be a partition of A and let 
SS be its same set relation.  We need to show 
that SS is an equivalence relation.

• We first show that SS is reflexive.  Let x be 
an arbitrary element of A.  Because the sets 
of P union to give A, x must be in at least one 
of them, Si.  So (x ∈ Si) ∧ (x ∈ Sj) is true, and 
thus SS(x, x) is true for an arbitrary x.



“Same-Set” is an E.R.

• To show SS is symmetric, let x and y be 
arbitrary elements of A and assume that 
SS(x, y) is true.  

• We need to prove SS(y, x).  But we have (x ∈ 
Si) ∧ (y ∈ Si) from the definition, and we can 
rewrite this as (y ∈ Si) ∧ (x ∈ Si) and thus 
prove that SS(y, x) is true.



“Same-Set” is an E.R.

• For transitivity, we let x, y, and z be arbitrary 
and assume SS(x, y) and SS(y, z).  

• From the definition we know that x and y are 
both in some Si  and that y and z are both in 
some Sj.  But since y is in both Si  and Sj, and 
the sets are pairwise disjoint, the sets Si and Sj 
are the same, and this single set contains both 
x and z.  

• So SS(x, z) is true, and we have proved that SS 
is transitive.



Equivalence Classes

• If R is an equivalence relation on A, and x is 
any element of A, we define the 
equivalence class of x, written [x], as the 
set {y: R(x, y)}, that is, the set of elements of A 
that are related to x by R.

• The universal relation U has a single 
equivalence class consisting of all the 
elements.  The equality relation has a separate 
equivalence class for each element.



Equivalence Classes

• In the parity relation, the set of even numbers 
forms one equivalence class and the set of 
odd numbers forms another.

• If we let A be the set of people in the USA, 
and define R(x, y) to mean “x and y are legal 
residents of the same state”, we get fifty 
equivalence classes, one for each state.  One 
of them is {x: x is a legal resident of 
Massachusetts}.



Clicker Question #3
• Again let S be the set of fifty states and let 

D(x, y) be the relation “state x and state y 
have the same first letter in their name”.  
How many (non-empty) equivalence classes 
does S have?

• (a) one

• (b) 26 minus the number of letters that don’t 
begin any state names

• (c) 26

• (d) none of the above



Answer #3
• Again let S be the set of fifty states and let 

D(x, y) be the relation “state x and state y 
have the same first letter in their name”.  
How many (non-empty) equivalence classes 
does S have?

• (a) one

• (b) 26 minus the number of letters that don’t 
begin any state names ({B, E, J, Q, X, Y, Z}, so 19)

• (c) 26

• (d) none of the above



The Classes Form a Partition

• To finish the proof of the Partition Theorem, 
we must prove that if R is any equivalence 
relation on A, the set of equivalence classes 
forms a partition.

• Note that in the set of classes, we only count 
a class once even if it has multiple definitions.  
So if [x] and [y] are the same set, it is just one 
set of the partition.



The Classes Form a Partition

• Recall our three conditions for a set of sets 
to be a partition.  Condition (1) says that 
each set is a subset of A, which is clearly true 
for the classes.

• Condition (2) says that the sets union 
together to give A, which is true for the 
classes because each element is in at least 
one class, its own.

• We still have to show (3) for the classes, that 
they are pairwise disjoint.



Finishing the Proof

• Let [x] and [y] be the equivalence classes of 
two arbitrary elements x and y of A.  (This 
gives us two arbitrary equivalence classes, 
which might or might not be equal as sets.)  

• We must show that ([x] ≠ [y]) → ([x] ∩ [y] 
= ∅).  We’ll do this by contrapositive, showing 
(∃z: z ∈ [x] ∩ [y]) → ([x] = [y]).



Finishing the Proof

• Assume that an element z of [x] ∩ [y] exists 
and name it z.  

• We must show that [x] = [y], which means 
∀w: (w ∈ [x]) ↔ (w ∈ [y]).  

• By the definition of equivalence classes, this 
means ∀w: R(x, w) ↔ R(y, w).  So let w be 

arbitrary.



Finishing the Proof

• We know that R(x, z) and R(y, z).  Assume 
R(x, w).  We have R(z, x) by symmetry, and 
then R(y, z), R(z, x), and R(x, w) give us R(y, w) 
by transitivity.

• The argument that R(y, w) → R(x, w) is 
exactly the same as R(x, w) → R(y, w).

• So if z exists, [x] and [y] contain exactly the 
same elements.  We have completed our 
proof that the classes form a partition.


