1. Let $P(n)$ be the statement that $n!<n^{n}$, where $n \geq 2$ is an integer.

Basis step: $2!=2 \cdot 1=2<4=2^{2}$
Inductive hypothesis: Assume $k!<k^{k}$ for some $k \geq 2$.
(We need to show that $P(k+1)$ is true, given the inductive hypothesis.)
Inductive step:

$$
\begin{aligned}
(k+1)! & =(k+1) k! \\
& <(k+1) k^{k} \\
& <(k+1)(k+1)^{k} \\
& =(k+1)^{k+1}
\end{aligned}
$$

Now, since we have completed the base and inductive steps, by the principle of mathematical induction, the inequality is true for any $n \geq 2$. If we had shown $P(3)$ as our basis step, then the inequality would only be proven for $n \geq 3$.
2. For any positive integer n

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1} .
$$

Proof by induction on n.

Basis step: Let $n=1$. Then

$$
\sum_{i=1}^{1} \frac{1}{i(i+1)}=\frac{1}{1 \cdot 2}=\frac{1}{2}=\frac{1}{1+1} .
$$

Inductive hypothesis: Assume that for some positive integer k

$$
\sum_{i=1}^{k} \frac{1}{i(i+1)}=\frac{k}{k+1}
$$

Inductive step:

$$
\begin{aligned}
\sum_{i=1}^{k+1} \frac{1}{i(i+1)} & =\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)}{(k+1)(k+2)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k(k+2)+1}{(k+1)(k+2)} \\
& =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\
& =\frac{(k+1)(k+1)}{(k+1)(k+2)} \\
& =\frac{k+1}{k+2}
\end{aligned}
$$

3. For any positive integer n

$$
\sum_{i=1}^{n} i \cdot i!=1 \cdot 1!+2 \cdot 2!+\ldots+n \cdot n!=(n+1)!-1
$$

Proof by induction on n.

Basis step: Let $n=1$. Then

$$
\sum_{i=1}^{1} i \cdot i!=1 \cdot 1!=1
$$

and

$$
(1+1)!-1=2!-1=2-1=1 .
$$

Inductive hypothesis: Assume that for some positive integer k

$$
\sum_{i=1}^{k} i \cdot i!=1 \cdot 1!+2 \cdot 2!+\ldots+k \cdot k!=(k+1)!-1
$$

Inductive step:

$$
\begin{aligned}
\sum_{i=1}^{k+1} i \cdot i! & =1 \cdot 1!+2 \cdot 2!+\ldots+k \cdot k!+(k+1)(k+1)! \\
& =(k+1)!-1+(k+1)(k+1)! \\
& =(k+1)!(1+(k+1))-1 \\
& =(k+2)(k+1)!-1 \\
& =(k+2)!-1
\end{aligned}
$$

4. For any positive integer n

$$
\sum_{i=1}^{n} i(i+1)(i+2)=1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+n(n+1)(n+2)=n(n+1)(n+2)(n+3) / 4
$$

Proof by induction on n.

Basis step: Let $n=1$. Then

$$
\sum_{i=1}^{1} i(i+1)(i+2)=1 \cdot 2 \cdot 3=6
$$

and

$$
1(1+1)(1+2)(1+3) / 4=1 \cdot 2 \cdot 3 \cdot 4 / 4=6
$$

Inductive hypothesis: Assume that for some positive integer k

$$
\sum_{i=1}^{k} i(i+1)(i+2)=1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+k(k+1)(k+2)=k(k+1)(k+2)(k+3) / 4
$$

Inductive step:

$$
\begin{aligned}
\sum_{i=1}^{k+1} i(i+1)(i+2) & =1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+k(k+1)(k+2)+(k+1)(k+2)(k+3) \\
& =k(k+1)(k+2)(k+3) / 4+(k+1)(k+2)(k+3) \\
& =(k+1)(k+2)(k+3)(k / 4+1) \\
& =(k+1)(k+2)(k+3)(k / 4+4 / 4) \\
& =(k+1)(k+2)(k+3)(k+4) / 4
\end{aligned}
$$

5. For any nonnegative integer $n, 6$ divides $n^{3}-n$.

Proof by induction on n.

Basis step: Let $n=0$. Then $n^{3}-n=0^{3}-0=0$, which is divisible by every integer, including 6.
Inductive hypothesis: Assume for some nonnegative integer k that $k^{3}-k$ is divisible by 6.

Inductive step:

$$
\begin{aligned}
(k+1)^{3}-(k+1) & =k^{3}+3 k^{2}+3 k+1-k-1 \\
& =\left(k^{3}-k\right)+3 k^{2}+3 k+1-1 \\
& =\left(k^{3}-k\right)+3\left(k^{2}+k\right)
\end{aligned}
$$

By the inductive hypothesis, $\left(k^{3}-k\right)$ is divisible by 6 . Clearly, $3\left(k^{2}+k\right)$ is divisible by 3 . To show that it is divisible by 6 , it suffices to show that $k^{2}+k$ is even. We do this by cases.
Case 1: k is even, which means there exists some integer m such that $k=2 m$, so $k^{2}+k=4 m^{2}+2 m=2\left(2 m^{2}+m\right)$ is even.
Case 2: k is odd, which means there exists some integer m such that $k=2 m-1$, so
$k^{2}+k=(2 m-1)^{2}+2 m-1=4 m^{2}-4 m+1+2 m-1=4 m^{2}-2 m=2\left(2 m^{2}-m\right)$ is even.
6. If n is an integer where $n \geq 3$, then $n^{2}-7 n+12$ is nonnegative.

Proof by induction on n.

Basis step: Let $n=3$. Then

$$
n^{2}-7 n+12=3^{2}-7 \cdot 3+12=9-21+12=0
$$

Inductive hypothesis: Assume for some integer $k \geq 3$ that $k^{2}-7 k+12$ is nonnegative. Inductive step:

$$
\begin{aligned}
(k+1)^{2}-7(k+1)+12 & =k^{2}+2 k+1-7 k-7+12 \\
& =\left(k^{2}-7 k+12\right)+(2 k+1-7) \\
& \geq 0+2 k+1-7 \\
& =2 k-6 \\
& \geq 2 \cdot 3-6 \\
& =0
\end{aligned}
$$

7. For any nonnegative integer n where $n \neq 2$ and $n \neq 3$, the inequality $n^{2} \leq n$! is true.

Proof. Note first that:

- if $n=0$, then $0^{2}=0$ and $0!=1$.
- if $n=1$, then $1^{2}=1$ and $1!=1$.
- if $n=2$, then $2^{2}=4$ and $2!=2$.
- if $n=3$, then $3^{2}=9$ and $3!=6$.

We prove by induction on n that $n^{2} \leq n$! for all $n \geq 4$.
Basis step: $4^{2}=16$ and $4!=24$
Inductive hypothesis: Assume for some integer $k \geq 4$ that $k^{2} \leq k$!. Inductive step:

$$
\begin{aligned}
(k+1)! & =(k+1) k! \\
& \geq(k+1) k^{2} \\
& =k^{2} \cdot k+k^{2} \\
& \geq 4^{2} \cdot k+k^{2} \\
& =15 k+k+k^{2} \\
& \geq 15 k+1+k^{2} \\
& \geq 2 k+1+k^{2} \\
& =(k+1)^{2}
\end{aligned}
$$

