1. Prove that $n!<n^{n}$, where $n \geq 2$ is an integer.

Remember to divide your proof up into these three steps:
Basis step: Show for $n=2$.
Inductive hypothesis: Assume the statement for some n.
Inductive step: Show that your assumption for n means the statement is true for $n+1$ as well. (To complete the inductive step, you'll need to use your inductive hypothesis at least once!)
2. Prove that for any positive integer n

$$
\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

3. Prove that for any positive integer n

$$
\sum_{i=1}^{n} i \cdot i!=1 \cdot 1!+2 \cdot 2!+\ldots+n \cdot n!=(n+1)!-1
$$

4. Prove that for any positive integer n

$$
\sum_{i=1}^{n} i(i+1)(i+2)=1 \cdot 2 \cdot 3+2 \cdot 3 \cdot 4+\ldots+n(n+1)(n+2)=n(n+1)(n+2)(n+3) / 4
$$

5. Prove that for any nonnegative integer $n, 6$ divides $n^{3}-n$.
6. Prove that if n is an integer where $n \geq 3$, then $n^{2}-7 n+12$ is nonnegative.
7. Prove that for any nonnegative integer n where $n \neq 2$ and $n \neq 3$, the inequality $n^{2} \leq n$! is true.
