
CMPSCI 187: Programming With Data Structures	
Lecture 4: Data Structures Overview
12 September 2012

Data Structures Overview

• Containers and Collections

• Ways to Arrange a Collection

• The Stack: Data and Operations

• Separating Specification From Implementation

• Inheritance: Distinguishable Objects

The Container Metaphor

• Imagine a container terminal in a seaport. (There is a nice picture on the
cover of last year’s text by Lewis and Chase.)

• Containers come off of ships, for example, and are put on trucks or trains.

• The containers are identical on the outside, different on the inside, but
identifiable by labels.

• Between the unloading from ships and loading onto something else we have
a collection of containers.

• This is a good metaphor for a collection of pieces of data, such as an array.
We often want to move the objects around without looking at their contents.

Collections of Data

• A Collection is a set of objects from the same class.

• We can create Collections, insert elements, and remove elements.

• We might want to remove an element that is “best” in some way, such as the
container that needs to be shipped out next.

• How the Collection is arranged internally might affect how quickly or easily we
can find and remove that element.

• Different kinds of Collections have different sets of operations.

• We will use generics (Java 5.0) so that from type T we get type
Collection<T>, and so forth.

How might we arrange our containers?

• If they come off the ship in the right order, we could put them in a line where
we add elements to one end and take them off the other -- a queue.

• If they come off the ship in reverse order, we could put them on a train siding
where we can take out the last one we put in -- a stack, as in the discussion.

• If they might come off in any order, what we do depends on the memory we
have.

• Can we keep them in a sorted array? What happens if we get a new one that
belongs between two that are already adjacent?

• If we have multiple “buffer areas”, managing each one might be easier as they
would on average have fewer elements in them.

A More Formal Definition of a Stack

• A Stack<T> object is a set of T objects.

• We can create an empty Stack<T>, with no elements.

• With an existing Stack<T>, we can push a new T element, inserting it.

• If a Stack<T> has one or more elements, we can pop the last element that
was pushed, removing it.

• If a Stack<T> has one or more elements, we can peek at the last element
pushed, looking at it without removing it.

• We can find out how many elements are in a Stack<T>, in particular, we can
test whether there are any at all.

Separating Specification From Implementation

• Each of our standard data structures is specified by an abstract data type
(ADT), a list of the permissible operations as we’ve given for the Stack.

• We should be able to write code for a Stack that works however it is
implemented. But a Java class fixes a particular implementation, with its
fields and code for the methods.

• So “Stack” should not be a class! In Java, it ought to be an interface, which
is a list of methods that specifies ways we can use a class. A class
implements the interface if all those ways to use the class are enabled.

• Actually in the Collections package in Java there is a class called Stack, in
fact a generic definition that gives a class Stack<T> for every class T. DJW
have an interface called StackInterface<T>.

Implementations of a Data Structure

• Stacks, queues, lists, and graphs are conceptual ways to group multiple
objects into a single object. But in our actual code we will need to group
pieces of data (objects) into larger objects, using the rules of Java. There are
two basic ways to do this.

• We know about arrays, single objects that contain an linear sequence of
other objects of a particular type. We can easily retrieve a particular element
x[i] of an array x.

• The other basic way to group objects is a linked structure using pointers.
Our linked structure “contains” the first object, which “contains” the second,
which contains the third, and so on until one object “contains” the virtual
object null and the sequence ends. Since Java objects are always called
by reference, our pointers are implicit -- we point to an object by saying that
we contain the object itself. This can be confusing if you are used to a
language like C or C++ with explicit pointers.

Different Implementations of the Same Structure

• The first data structure that DJW studies in detail is a StringLog, a collection
of String objects. We can insert strings into a StringLog, test whether a
particular string is a member of it, find out how many strings it contains, and
get a single string representing the whole StringLog.

• One way to implement StringLog is with an array of strings, an object of type
String []. Of course arrays have a fixed length, where the length of a
StringLog varies with time.

• We could also make a linked structure where each node of the structure
contains a String object and a pointer to the next node.

• If we write code that only uses the given operations of a StringLog, it should
work equally well whichever of the two implementations is used.

Inheritance: Distinguishable Objects

• The container metaphor is a good way to think about inheritance.

• Some containers may need refrigeration, some may have hazardous
chemicals, some may be empty, etc., but all are still containers and can be
offloaded, moved around in the port, and sent out like any other.

• If a Container is actually a RefrigContainer, there may be other operations that
we can perform on it. So the class RefrigContainer will extend Container,
and be a subclass of it. A RefrigContainer object can have either Container
or RefrigContainer instance methods run from it.

• We can’t say too many times that is-a and has-a relationships are different.
In Project 1, a StringLog has-a String, but in the Lecture 3 example a Terrier
is-a Dog.

