
CMPSCI 187: Programming With Data Structures 

Lecture #3:  Java Overview

10 September 2012



Java Overview

• The Von Neumann Machine Model

• Primitive Data in Java

• Objects and Pointers

• Arrays and Strings

• Methods and Scope

• The Call Stack and Exceptions



Obligatory xkcd Commentary
• If you don’t regularly read xkcd, a 

web comic written by Randall 
Munroe, you should.

• He is interested in many things 
other than computer science, but he 
is very good at getting to the 
essence of a point in a funny way.

• There are now 1103 of them (three 
per week for several years) and the 
backlist provides a wonderful 
opportunity to be distracted from 
work.



The Von Neumann Machine Model

• Most computers have a word size, home registers, other registers, and an 
instruction set.

• These days 64-bit words can be numbers (fixed or floating point), characters, 
pointers, or instructions.

• An instruction normally either moves a word to or from a register or carries 
out some operation on a word in a home register.

• The program is a sequence of instructions, with control flow by branch and 
goto statements.



High-Level Languages, Compilers, Interpreters

• High-level languages like Java let us write programs without knowing the 
details of our machine, and give us a richer vocabulary of instructions.

• A Java program (one or more classes) is compiled into class files.

• When you run the program, an interpreter creates the machine-language 
program that the machine actually runs.

• We give up some efficiency and some care in memory management by going 
to a higher-level language, but we make up for it in programming power.



Primitive Data

• All data in Java eventually reduces to primitive values, usually stored in single 
machine words.

• There are several fixed-point primitive types (byte, short, int, long), two 
floating-point types (float and double), the Unicode character type char, and 
the boolean type.

• There are lots of arithmetic operations on these that you may look up.

• Some automatic type casts occur from some of these to others.

• Each primitive type has a wrapper class to allow them to be used as objects.



Objects and Pointers

• The basic unit of data in Java is an object, a collection of data with 
associated methods.

• Objects come from classes, and the class definition indicates what sort of 
data the object has and includes the code for its methods.

• Each object is stored somewhere out in memory, in a place chosen at run 
time.  A pointer or reference is the address where an object is, stored in a 
machine word.  

• While primitives are passed as parameters by value, objects are passed by 
reference.  It is possible for two or more variables to refer to the same object, 
so that changes to one variable will affect the other -- this is called aliasing.



Dynamic Typing

• Look up “Haddock’s Eyes” in Wikipedia -- “the name of the song is called...”

• An object has a type (what it is called) and a class (what it is).

• It gets a class when it is created with a new statement, and this never 
changes as the object is used.

• It can be referred to by a variable of any compatible type, e.g., a Dog variable 
could contain a Rottweiler or a Terrier object.

• When an overloaded instance method is called from an object, the version 
for the class is what gets run.



Dynamic Typing Example

public class Dog {
   public void bark {
      System.out.println(“Woof!”);}}
public class Terrier extends Dog {
   public void bark {
      System.out.println(“Yip!”);}
   public void dig {}}

Dog cardie = new Dog();
Dog duncan = new Terrier();
cardie.bark(); // Woof!
duncan.bark(); // Yip!
cardie.dig(); // won’t compile
duncan.dig(); // won’t compile
Terrier d = (Terrier) duncan;
d.dig(); // works
d.bark(); // Yip!
Terrier c = (Terrier) cardie; // compiles, ClassCastException



Arrays

• An array is a structure made up of primitives or objects of the same type.

• If T is any type, T[ ] is the type of arrays made from T objects.

• We can have two-dimensional arrays, or worse, with types like T [ ] [ ] [ ].

• Arrays of primitives are in consecutive locations -- arrays of objects are arrays 
of pointers, pointer to created objects (picture).

• Arrays are created like objects with new and have a given length.  A method 
need not know the length of an array to use it.

• Shallow versus deep copying -- a new array with the same objects is aliased.



Strings

• Strings are more or less arrays of char but are a class of objects with many 
useful methods (see the API for reference).

• Strings are immutable -- once created they can only be overwritten with new 
strings, not edited.  (Though if this happens within a method it looks like 
editing.)

• Remember that “=”, as for objects, means “the same copy of the same 
String”, while “.equals” means “the same characters in the same order”.

• The “+” operator on Strings is concatenation, sometimes casting other things 
into Strings.

• All objects have “toString” methods.



Methods and Scope

• The commands that cause Java programs to actually do things all occur within 
methods.

• A class may have a main method, which can be run by the operating system.

• A main method may call other methods, which are either instance or class methods.  
A method call runs until a return statement, which resumes the calling method at the 
point after the call.

• Methods may have return values (of the type given in their signature) and/or side 
effects.

• Side effects could include changes in fields of objects, or creation of new objects.

• Variables declared in a method are only meaningful there, not in any calls.



Scope of Variables

• A field of an object is normally only modified by a method of that object’s 
class (often called by some other method).

• A class may have class variables, also normally only modified by methods of 
the class.

• A variable declared within a method is meaningful only there, not outside and 
not within another method called from there.

• A method may have parameters, with names and types given by the 
method’s signature.

• Methods and fields may be designated public or private.



• When one method calls another, the context of the first is saved to return to.

• If that second method calls a third, both must be saved.  When we restore 
context, we return to the one that was saved last.

• When we save a bunch of things and only want to access the last-saved one 
first, we need a stack.  

• An exception interrupts a method.  If the exception can be thrown, it goes to 
the calling method, where it might stop execution or be thrown to the method 
calling that, and so on.

• The operating system prints the call stack when an exception stops 
execution -- which methods were in progress when the exception happened.

The Call Stack and Exceptions


