
CMPSCI 187: Programming With Data Structures

Lecture #29: Case Study -- Word Frequencies
David Mix Barrington
19 November 2012

Case Study -- Word Frequencies

• The Word Frequency Problem

• Choosing a Data Structure

• Input and Output in Project #5

• The Algorithm Using BST’s

• The WordFreq Class

• The FrequencyList Class

• Analyzing FrequencyList

The Word Frequency Problem

• We conclude the chapter on Binary Search Trees by using them to compute
the frequencies of words in a text.

• We define a word to be a sequence of letters and digits, with a delimiter at
each end -- a space, line break, or punctuation mark. Our goal is to produce
an alphabetical list of the words occurring in the text, with the number of
occurrences of each word. We ignore the case of letters throughout.

• We also allow the user to control two parameters of the report. There is a
minimum word size so that we don’t count frequencies of words below that
size. And in our report, we only list those words that occur at least some
number of times, called the minimum count to report.

• Our basic object will contain a word and its count of occurrences (so far).

Choosing a Data Structure

• The basic idea is obvious -- we will read through our text with a Scanner
object, identifying each word that we see. We need to keep track of each
unique word we have seen, each with its count. When we read a word,
therefore, we need to determine whether we have seen it before, and if so
how many times. We then either create a new word-count pair for a new
word, or replace the existing word-count pair with another, incrementing the
count.

• If we keep the word-count pairs in a collection, we need to test whether a
given word is represented, retrieve its word-count pair if it is, and insert the
correct new word-count pair for that word. We also need to output the words
from the pairs in the collection in alphabetical order.

• DJW choose to keep the collection as a binary search tree, which can easily
be output in order and can be searched quickly as long as it stays balanced.

Using a Priority Queue

• In Project #5, we begin by having you solve the word frequency problem with
a priority queue, where the word-frequency pairs are sorted by frequency
rather than alphabetically.

• This means that you cannot use DJW’s data structure for word-count pairs,
because they have a compareTo method that compares the strings
alphabetically, and you need a compareTo method that compares
frequencies.

• But you are also required to output your words alphabetically. This means
that after reading the entire text, you will need to sort your word-count pairs
alphabetically. The simplest way to do this is to convert each of your pairs
into a DJW pair, and put them into a second priority queue that keeps them in
alphabetical order.

Input and Output in Project #5

• The FrequencyList class we’re about to see takes input from the console
and from a file, and gives its output to the console. The user specifies the
two parameters, the program reads the file words.dat, and the program
sends the report to the console. This fits DJW’s application scenario of a tool
to be used while developing other text analysis software. But it isn’t really
suitable for us to grade.

• Your program will be able to take its parameters from either the console or
from the command line. You may or may not have used the command line
before -- it is the reason for the parameter String [] args in the main
method of any Java class. If we say java MyClass foo bar rather than
just java MyClass, for example, the string foo becomes args[0] and the
string bar becomes args[1].

• Your program will allow the user to specify a third parameter, the name of the
text file to read, and will give its output to a file named report.dat.

The Algorithm Using BST’s

• So DJW’s program has a collection of word-count pairs, and it is about to
process the next word in the text file. If the word is too short, of course, we
can just ignore it (except for our count of the total number of words). But if it is
long enough we must either create a new pair for it with count 1, or replace the
current pair with another, incrementing the count.

• The contains method will tell us whether the word is already there, as long as
the compareTo method looks only at the strings. The get method is even
better, as it returns us a pointer to the pair in question if it is there. The first
thing we would think to do is to remove this pair and add a new one with the
new count. But we can save significant time by just changing the count of the
existing pair, in place. The new count doesn’t affect where the pair belongs in
the tree. (This won’t work with your priority queue in Project #5.)

• It’s easy to make a new pair and add it to the tree if this is an entirely new word.

The WordFreq Class

• We need to create new objects, increment the count of an object, compare
two objects alphabetically by word, and produce a string in a particular
format, with the frequency given by a string of exactly five digits.

public class WordFreq implements Comparable<WordFreq> {
 private String word;
 private int freq;
 DecimalFormat fmt = new DecimalFormat(“00000”);
 public WordFreq(String newWord) {
 word = newWord; freq = 0;}
 public void inc() {freq++;}
 public int compareTo (WordFreq other) {
 return this.word.compareTo(other.word);
 public String toString() {
 return (fmt.format(freq + “ “ + word);}
 public String wordIs() {return word;} // could be “getWord”
 public int freqIs() {return freq;}} // could be “getFreq”

The FrequencyList Class -- Header and Input

• This code sets up the variables we need and initializes some from the console.
public class FrequencyList {
 public static void main (String [] args) throws IOException {
 String word;
 WordFreq wordToTry, wordInTree, wordFromTree;
 BinarySearchTree<WordFreq> tree = new BST<WordFreq>();
 String skip; // skip end of line after reading integer
 int numWords = 0 , numValidWords = 0,
 numValidFreqs = 0, minSize, minFreq, treeSize;
 FileReader fin = new FileReader(“words.dat”);
 Scanner wordsIn = new Scanner (fin);
 wordsIn.useDelimiter(“[^a-zA-Z0-9]);
 Scanner conIn = newScanner(System.in);
 System.out.print(“Minimum word size: “);
 minSize = conIn.nextInt();
 skip = conIn.nextLine();
 System.out.print(“Minimum word frequency: “);
 minFreq = conIn.nextInt();
 skip = conIn.nextLine();

The FrequencyList Class: Processing the Text

while (wordsIn.hasNext()) {
 word = wordsIn.next(); // delimiter ensures we get a word
 numWords++;
 if (word.length() >= minSize) {
 numValidWords++;
 word = word.toLowerCase();
 wordToTry = new WordFreq(word);
 wordInTree = tree.get(wordToTry);
 if (wordInTree == null) {
 wordToTry.inc(); tree.add(wordToTry);}
 else wordInTree.inc();}}
treeSize = tree.reset(BinarySearchTree.INORDER);

The FrequencyList Class: Output

• Your format in Project #5 will match the format in DJW’s code, which may or
may not match the book text exactly. For example, the string of 17 dashes in
the code on page 596 matches to a string of 13 dashes on page 597.

S.o.pln (“The words of length “ + minSize + “and above,”);
S.o.pln (“with frequency counts of “ + minFreq + “and above:”);
System.out.println();
System.out.println(“Freq Word”);
System.out.println(“----- -----------------”); // 13 on p. 597
for (int count = 1; count <= treeSize; count++) {
 wordFromTree = tree.getNext (BinarySearchTree.INORDER);
 if (wordFromTree.freqIs() >= minFreq) {
 numValidFreqs++; System.out.println(wordFromTree);}}
System.out.println();
S.o.pln (numWords + “ words in the input file. “); // note spaces
S.o.pln (numValidWords + “ of them are at least “
 + minSize + “ characters.”);
S.o.pln (numValidFreqs + “ of these occur at least “
 + minFreq + “ times.”);
System.out.println(“Program completed.”);}}

Analyzing FrequencyList

• What is the running time of FrequencyList? The first question should be
“in terms of what”? Let’s let n be the number of characters in the text file.
We will spend O(n) time reading the file, but the rest of the processing
depends on characteristics of the file -- how many words, how many distinct
words, and so on.

• Let’s say that there are O(n) words in the file -- since words are usually a
constant length, this is probably true. The worst case is actually when they
are all distinct, because then we have O(n) nodes in our BST. The
unsuccessful searches take O(log n) time each as long as the BST stays
balanced, so we have a total time of O(n log n).

• What about the priority queue? We could take O(n) for each insertion into the
queue, for a total time of O(n2). But the priority queue will take advantage of
many words occurring often, because we don’t have to search far into it to
find the most common words. On average with English, our successful
searches take about O(log n) time, but this analysis is beyond this course.

