
CMPSCI 187 Fall 2012: Lecture #2

Software Engineering Overview
David Mix Barrington
7 September 2012

Software Engineering Overview

• Software Versus Programs

• Software Engineering Versus Engineering

• Goals for Software Quality

• The Software Life Cycle

• The Waterfall Methodology

• Agile Methods of Software Engineering

Software Versus Programs

• What is software? How is it different from CMPSCI 121 or 187 programs?

• Wikipedia: “Software is a set of programs, procedures, algorithms and its
documentation concerned with the operation of a data processing
system.”

• A single program solves a single data processing problem, with specified
input and output. The programs in a piece of software may have different
users, different desired behaviors, different versions, etc.

• Note that “software” includes “procedures” and “associated documentation”
-- everything in the system but the hardware.

• Examples: SPIRE, Mac OS X, Civilization, Facebook, the internet protocol...

Software Engineering Versus Real Engineering

• Engineering is the application of science and mathematics to affect reality,
particularly by constructing artifacts.

• If you wanted to build a bridge across the Connecticut River from Hatfield to
Hadley, a civil engineer could give you a variety of designs and cost and
building time estimates for each.

• “Software engineers” apply science and engineering to build artifacts, but
they are very bad at estimating cost or completion time.

• Real engineers usually apply known techniques and materials with known
characteristics -- software engineers not so much.

• Breakthrough software, like Facebook, changes the environment it exists in.

Goals for Software Quality

• DJW in section 1.1 say that software should (1) work, (2) be modifiable
without extensive time and effort, (3) be reusable, (4) be completed on time
and within budget.

• Included in “it works” are correctness, reliability, and efficiency. These
three aspects will be our main concern for the programs we write.

• Quality is in the eye of the stakeholder: maybe a paying customer, maybe
not. Developers and maintainers care about the internals of a piece of
software, while users care only about observable behavior.

• In this course we are concerned with particular tools for building software,
the reusable systems for storing information called data structures.

More on Software Quality Goals

• A program is correct if it meets its specification. (In CMPSCI 320 you will
find that getting to a useful specification is at least as hard as creating
software that meets the specification.) We use a combination of testing and
analysis to determine whether a program is correct.

• A program is reliable if it avoids software failures -- “unacceptable
behaviors that occur within permissible operating conditions”. Absolute
reliability is usually impossible, particularly when the environment includes
varying conditions of use and even malicious attempts to deny service or
break data security.

• A program is efficient if the quantity of resources it uses, most importantly
time and memory, is as small as possible. One of the goals of this course is
to begin the study of computational complexity -- the science of how
resource use, particularly running time, increases with input size.

The Software Life Cycle

• A piece of software, at least metaphorically, is born, lives, and dies. We can
identify a number of stages through which most pieces of software go:

• As I mentioned, most of CMPSCI 320 is spent on steps 1-4.

1. Problem analysis
2. Requirements elicitation
3. Requirements specification
4. Architectural and detailed design
5. Implementation of the design
6. Testing and verification
7. Delivery
8. Operation
9. Maintenance
10. Obsolescence

The Waterfall Methodology
• The classic methodology for software design is called the waterfall

approach because these steps are carried out in order, with the completion
of each step producing a carefully documented set of instructions for the next
step.

• The first step gives a complete statement of the problem, the next gives a list
of the requirements, the third gives a formal specification of the requirements,
the fourth gives a description of the parts of the system and how they will
interact, and so forth.

• The maintenance process during operation may determine that changes are
needed. Where those changes must start will vary -- perhaps the problem
can be solved by reimplementing something in the original design, but you
might have to change the architecture or even the requirements or the
problem statement itself.

• Those changes “cascade downward” to the later steps of the process.

Agile Methods for Software Engineering

• The larger a piece of software, the less well the waterfall approach works.

• One alternative is the “spiral model” (DFW page 6) where the activity is
divided into “setting objectives”, “risk assessment”, “development”, and
“validation”, and the design process cycles through each of these four stages
in turn as the software gets larger and more useful.

• If the software is going to do something completely new, it may be impossible
to specify what it should do until some version of it already exists -- a rapid
prototype that accomplishes some subset of what the final version’s goals.

• Agile methods of design involve the customer at all stages, deliver the
product incrementally, are open to change in specifications, and use pairs
of collaborating programmers.

Obligatory xkcd Commentary
• If you don’t regularly read xkcd, a

web comic written by Randall
Munroe, you should.

• He is interested in many things
other than computer science, but he
is very good at getting to the
essence of a point in a funny way.

• There are now 1103 of them (three
per week for several years) and the
backlist provides a wonderful
opportunity to be distracted from
work.

