
CMPSCI 187 Discussion #9: Implementing Double-Ended Queues
Individual Handout

David Mix Barrington
31 October 2012

Here is the Deque interface from Discussion #7:

public interface Deque<T> {

public void addToFront (T element);

public T removeFront () throws EmptyCollectionException;

public T first () throws EmptyCollectionException;

public void addToRear (T element);

public T removeRear () throws EmptyCollectionException;

public T last () throwsEmptyCollectionException;

public boolean isEmpty ();

public int size ();}

And here are the LLNode and DLLNode generic classes from DJW:

public class LLNode<T> {

private LLNode link;

private T info;

public LLNode (T info) {this.info = info; link = null;}

public void setInfo (T info) {this.info = info;}

public T getInfo () {return info;}

public void setLink (LLNode link) {this.link = link;}

public LLNode getLink () {return link;}}

public class DLLNode<T> extends LLNode<T> {

private DLLNode<T> back;

public DLLNode (T info) {super(info); back = null;}

public void setBack (DLLNode<T> back) {this.back = back;}

public DLLNode<T> getBack() {return back;}}

Your task is a simple one – write a generic class DLLDeque<T> that implements the Deque<T>

interface using doubly linked lists of DLLNode<T> objects. A DLLDeque object will have three
instance fields – pointers to the first and last nodes, and an int storing the number of elements in
the deque. You may find it easier to use header and trailer nodes, so that your doubly linked list
always has at least two nodes.

1

There are eight methods to write, and there is a symmetry between the forward and backward
directions, so that each of the first three methods has a matching method that can be obtained
from it by reversing all the directions.

2

