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Analysis of Algorithms Overview

• What is Analysis of Algorithms?

• L&C’s Dishwashing Example

• Being Usefully Vague About Functions

• Important Classes of Growth Functions

• Determining Time Complexity From Code



What is Analysis of Algorithms?

• We want to talk about the resources, usually time, used by an algorithm, as a 
function of the input size.

• The time may be different for different inputs of the same size -- we take the 
worst-case time because we want to make a guarantee to the user.

• The time complexity of an algorithm is a function with the number of input 
bits as its input, and the worst-case running time (in seconds, say, or in clock 
cycles) as the output.

• But such a function is very hard to work with.  We need to develop a better 
mathematical way of talking about such functions, called asymptotic 
analysis or big-O notation.



L&C’s Dishwashing Example

• Let f(n) be the time (in seconds) that it takes to wash n dishes.

• Individual dishes may be cleaner or dirtier, but say that the worst take 30 
seconds.  

• In the Good Method, where the washing of later dishes doesn’t affect the 
earlier ones, we have that f(n) is at most 30n seconds.  In the worst case 
where every dish is horribly dirty, we take exactly 30n seconds.

• In the Bad Method, washing the i’th dish soils the first i-1 dishes.  For fun, 
let’s say that we can rewash a dish in 10 seconds.  Now we have f(1) = 30, f(2) 
= 30 + (30 + 10) = 70, f(3) = 30 + (30 + 10) + (30 + 10 + 10) = 120, and f(4) = 
30 + 40 + 50 + 60 = 180.  We have that f(n) is the sum for i from 1 to n of (30 + 
10(i-1), which evaluates to 30n + 10n(n-1)/2 = 5n^2 + 25n seconds.



Being Usefully Vague About Functions

• We went through some effort to get this function 5n^2 + 25n, but the most 
important thing about this function is that it is quadratic, a polynomial in n of 
degree 2.  The first function, 30n, is linear, meaning a polynomial of degree 1.

• The growth behavior of a polynomial in n, as n increases, depends primarily 
on the degree of the polynomial rather than the leading constant or the low-
order terms.  On page 16 of L&C is a table showing values of the functions 
15n^2, 45n, and 15n^2 + 45n.  Their point is that the first gets so much 
bigger than the second that the first and third are practically identical.

• If we graphed 0.0001n^2 against 10000n, the linear function would be larger 
for a long time, but the quadratic one would eventually catch up (in this case 
at n = 10^8.  Any quadratic with positive leading coefficient will eventually 
beat any linear.  So the linear term in a quadratic eventually does not matter.



Important Classes of Growth Functions

• There are a number of classes of growth functions that often occur in the 
analysis of algorithms.

• The first and perhaps more important is the class of constant functions, also 
called O(1) functions.  These don’t always have the same value, but they are 
bounded above by some constant.  For example, washing a dish in our 
example took O(1) time because it was never more than 30 seconds.  It is 
often much easier to see that a process takes O(1) time than to find the actual 
constant.  We need to know that the time is independent of the input size.

• The other functions that L&C list on page 17 are logarithmic, linear, n log n, 
quadratic, cubic, and exponential.  They have some graphs.

• In general “O(f)” means “grows proportionally with f(n)”.



More on Classes of Growth Functions

• Many important behaviors of a function depend only on the growth class.

• Look at how doubling the input size affects the running time in each case.  
For a constant function, there is no change.  For a linear function, the running 
time doubles.  For a quadratic function, it multiplies by four.  For an 
exponential function, it goes way up -- for 2^n it squares.

• Similarly, L&C look at how a fixed speedup affects the maximum size you can 
handle in a given time.  A speedup of 10 means that a linear-time algorithm 
can handle 10 times as much input.  A quadratic-time algorithm can handle 
about 3 times as much.  A 2^n time algorithm can handle three or four more 
inputs than it could before -- the speedup matters hardly at all.



Determining Time Complexity From Code

• It’s generally not too hard to tell when a piece of code takes O(1) or constant 
time.  You need to be sure that the behavior does not depend on the input 
size at all.

• If we have a loop like for (int i=0; i < n; i++) whatever(), where 
n is the input size, then we will execute whatever() at most n times.  We 
will also have some other steps to control the loop, but only a constant 
number for each time through.  

• Arithmetic with big-O is fun: We have (O(n) times O(1)) + (O(n) times O(1)), 
which is O(n) + O(n) = O(n).  (We’ll play with this a bit on HW#1.)



Determining Complexity From Code

• Another code example with nested loops:  if again the method call  
whatever() takes O(1) time, then the j-loop takes O(n) and the total loop 
takes O(n^2).   You might think that we get an advantage from not always 
taking n times through in the inner loop, but it’s only about half the time we 
would take from saying j < n instead.

for  (int i = 0, i < n, i++)
   for (int j = 0, j < i, j++)
      whatever( ); 



Running Time of Searches

• Suppose we have n elements in an array and need to find a particular value if 
it is there.

• If there are n values and each has its own address, we just check that 
address.   This takes O(1) time because we just need a few indirect 
addressing steps.

• If the list is unsorted, we do a linear search from the beginning until or unless 
we find it.  In the worst case we spend O(1) time on each location for O(n) 
total.

• If the list is sorted, and we do a binary search, we take O(log n) time, 
enormously better than O(1).


