
CMPSCI 187: Programming With Data Structures	

Lecture 4: Data Structures Overview
14 September 2011

Data Structures Overview

• Containers and Collections

• Ways to Arrange a Collection

• The Stack: Data and Operations

• Separating Specification From Implementation

• Inheritance: Distinguishable Objects

The Container Metaphor

• Imagine a seaport like that on the cover of Lewis and Chase.

• Containers come off of ships, for example, and are put on trucks or trains.

• The containers are identical on the outside, different on the inside, but
identifiable by labels.

• Between the unloading from ships and loading onto something else we have
a collection of containers.

• This is a good metaphor for a collection of pieces of data, such as an array.
We often want to move the objects around without looking at their contents.

Collections of Data

• A Collection is a set of objects from the same class.

• We can create Collections, insert elements, and remove elements.

• We might want to remove an element that is “best” in some way, such as the
container that needs to be shipped out next.

• How the Collection is arranged internally might affect how quickly or easily we
can find and remove that element.

• Different kinds of Collections have different sets of operations.

• We will use generics (Java 5.0) so that from type T we get type
Collection<T>, and so forth.

How might we arrange our containers?

• If they come off the ship in the right order, we could put them in a line where
we add elements to one end and take them off the other -- a queue.

• If they come off the ship in reverse order, we could put them on a train siding
where we can take out the last one we put in -- a stack, as in the discussion.

• If they might come off in any order, what we do depends on the memory we
have.

• Can we keep them in a sorted array? What happens if we get a new one that
belongs between two that are already adjacent?

• If we have multiple “buffer areas”, managing each one might be easier as they
would on average have fewer elements in them.

A More Formal Definition of a Stack

• A Stack<T> object is a set of T objects.

• We can create an empty Stack<T>, with no elements.

• With an existing Stack<T>, we can push a new <T> element, inserting it.

• If a Stack<T> has one or more elements, we can pop the last element that
was pushed, removing it.

• If a Stack<T> has one or more elements, we can peek at the last element
pushed, looking at it without removing it.

• We can find out how many elements are in a Stack<T>, in particular, we can
test whether there are any at all.

Separating Specification From Implementation

• Each of our standard data structures is specified by an abstract data type
(ADT), a list of the permissible operations as we’ve given for the Stack.

• We should be able to write code for a Stack that works however it is
implemented. But a Java class fixes a particular implementation, with its
fields and code for the methods.

• So “Stack” should not be a class! In Java, it ought to be an interface, which
is a list of methods that specifies ways we can use a class. A class
implements the interface if all those ways to use the class are enabled.

• Actually in the Collections package in Java there is a class called Stack, in
fact a generic definition that gives a class Stack<T> for every class T.

More on Implementations of Stacks

• For teaching purposes, Lewis and Chase define their own interface for stacks,
which they call StackADT.

• In Chapters 3 and 4, L&C will describe two classes that implement their
interface StackADT: ArrayStack and LinkedStack. Since these are generics,
we have classes ArrayStack<T> and LinkedStack<T> for every class
<T>.

• In Project 2 we will use a stack to search the Maze objects we are defining in
Project 1. We won’t care about which way the stacks are implemented --
your code should work for either one.

• Each of our later data structures will have an ADT specification and one or
more implementations, along with some application examples.

Inheritance: Distinguishable Objects

• The container metaphor is a good way to think about inheritance.

• Some containers may need refrigeration, some may have hazardous
chemicals, some may be empty, etc., but all are still containers and can be
offloaded, moved around in the port, and sent out like any other.

• If a Container is actually a RefrigContainer, there may be other operations that
we can perform on it. So the class RefrigContainer will extend Container,
and be a subclass of it. A RefrigContainer object can have either Container
or RefrigContainer instance methods run from it.

• We can’t say too many times that is-a and has-a relationships are different.
In Project 1, a Maze has-a Cell, but in the Lecture 3 example a Terrier is-a
Dog.

