
CMPSCI 187: Programming With Data Structures

Lecture 33: Hash Tables in Collections
5 December 2011

Hash Tables in Collections

• Sets and Maps

• SetADT in L&C and the Set Interface

• The Map Interface

• The HashSet Class

• The HashMap Class

• The Other Hash Table Classes

Sets and Maps

• If we are keeping a collection of items in a data structure, we have three basic
operations on it -- inserting a new item, deleting an item that is already there,
and finding whether a particular item is there.

• These are the basic operations of a set, which in mathematics is a collection
with no defined order and in which no item can occur more than once.

• If we are storing a large amount of data, where items are large, the finding
operation in particular is not just “is item x there” but “is any item there with
these characteristics”, for example “is there an employee with this name”. A
map is a data structure with two types, keys and values. We can think of the
map as a set of key-value pairs, or as a function that takes a key as input and
returns the value as output.

• Both binary search trees and hash tables can be used for both sets and maps.

SetADT in L&C and the Set Interface

• L&C’s interface, below, has the basic add, remove, and contains methods
and a method to remove a random element of the set. We’ll look at
implementations of these methods next lecture.

• The Set interface in the Collections framework extends Collection and
has most of the same methods, but not removeRandom. The removing
methods are optional because we may want to have a read-only set.

public interface SetADT<T> {
 public void add (T element);
 public T removeRandom ();
 public T remove (T element);
 public SetADT<T> union (SetADT<T> set);
 public boolean contains (T target);
 public boolean equals (SetADT<T> set);
 public boolean isEmpty();
 public int size();
 public Iterator<T> iterator();
 public String toString();

The Map Interface

• L&C don’t say much about this interface, but it is Java’s primary way to
arrange a database. Map<K, V> is a generic interface with two type
variables, one for the keys and one for the values. A key may only belong to
the Map once, with one value associated to it.

• The two most important methods are public V get (Object key),
which returns the value for that key or null if the key is not there, and
public V put (K key, V value), which assigns value as the new
value associated to key and returns the old one if there was any. The put
method is optional in case we want a read-only map.

• We can also get the Set of keys in the Map, a Collection of the values, and
work with the pairs as a separate type. We also have two contains
methods, one for keys and one for values.

The HashSet Class

• A HashSet object has a load factor f and a capacity c -- its base type T
should have a hashcode method. Entry e would go in the bucket for
e.hashcode() % c, and the bucket is maintained as a linked list.

• The iterator operates by running down the array of linked lists, so it returns
the entries in no particular order. The table resizes if the size exceeds the
load factor times the capacity.

public class HashSet<T> extends AbstractSet implements Set {
// constructors can take Collection, set load factor, capacity
 public boolean add (T e) { }
 public void clear () { }
 public Object clone () { } // makes shallow copy
 public boolean contains (Object o) { }
 public boolean isEmpty() { }
 public Iterator<T> iterator() { }
 public boolean remove (Object o) { } // returns whether there
 public boolean size() { }}

The HashMap Class

• This also has a load factor and capacity, and hashes using e.hashcode()
% c and has a linked list for each bucket.

• Map.Entry is a nested class, which we don’t want to think about -- an
object of that class is a single key-value pair.

public class HashMap<K, V> extends AbstractMap<K, V> {
// constructor can take a Map, set capacity and load factor
 public Object clone() { } // shallow copy
 public boolean containsKey (Object key) { }
 public boolean containsValue (Object value) { }
 public Set<Map.Entry<K,V>> entrySet() { }
 public V get (Object key) { } // returns null if no value
 public Set<K> keySet() { }
 public V put (K key, V value) { }
 public void putAll (Map<? extends K, ? extends V> m) { }
 public V remove (Object key) { }
 public Collection<V> values() { }

The Other Hash Table Classes

• HashTable was the first draft of HashMap and is now a legacy class. It does
not allow null values and is synchronized.

• WeakHashMap has weak keys, which are deleted by the garbage collector
unless they are used outside the hash table.

• IdentityHashMap compares keys by == instead of .equals, so you could
have two different keys with the same value in type K.

• LinkedHashSet and LinkedHashMap extend HashSet and HashMap
respectively, but also keep their entries (set) or values (map) in a linked list so
that their iterators return their elements in a set order such as first-added first
or last-accessed first. This is good if you need to retain the order of the
elements as you use them in a hash table.

