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The Hashing Idea

• If I have a multivolume encyclopedia on my shelf, it is very easy to find 
volume 7 because it is always in the same place on the shelf and I put it back 
there when I am done.  Each volume has its own address space.

• If I can afford to have an address for every item that might ever be in my 
collection, I can insert, delete, and find any item in O(1) time.  Box numbers in 
a post office work this way -- it is why we assign small numbers to data.

• The problem, of course, is that the address space is normally much larger 
than the storage space we have to allocate.  

• A hash table is a small address space, of the same size as our available 
storage, with a hash function that maps each address in the actual address 
space to an address in the hash table.  The hash function is not one-to-one.



A Hashing Example

• Let the address space be names, strings over the 26-letter alphabet.

• A simple hash table would have 26 addresses, one for each letter.  We could 
let the hash function of a name be its first letter.  This works well until I have 
two names with the same first letter -- a collision in the hash function.  I can 
convert each name to a hash address, but if I have a hash address I don’t 
know which real address was mapped to it.

• What if I take the first three letters as my hash address?  I may still get 
collisions -- this class contains several pairs of students with the same first 
three letters and in fact two pairs of students with the same name.  And 
though there are 26^3 = 17576 three-letter sequences, most of them will never 
be used (and some like SMI or JON in this country will be very common).

• A better hash function might avoid collisions entirely or make them rare.



Collisions
• Is it possible to avoid collisions entirely?  Yes, if the set of addresses to be 

hashed never changes and is smaller than our set of hash addresses  -- for 
example, the set of reserved words in a programming language.  If we can 
find a function that never maps two of these addresses to the same place, we 
get what is called perfect hashing.  

• But in general, all we know in advance is that our addresses will come from 
some large set, and we have to decide on our function before we know what 
they are.

• We would like our function to behave “randomly” as much as possible -- if the 
hash codes of our addresses were each chosen randomly from the hash 
addresses, we could calculate the probability of a given number of collisions. 
You’ll do this in CMPSCI 311.  The initial-letter function was far from random, 
and therefore was likely to have more collisions.



Some Hashing Functions
• Here is a good way to get a hash function that behaves “randomly”.  Take the 

datum and generate a large int value x.  Then choose a number p to be the 
size of your hash table, and let the hash address of the datum be x % p.

• It is best to have p be a prime number, for reasons we’ll explore more in 
CMPSCI 250.  For a taste of this, suppose that p were even and most of the x 
values were odd.  Then most of the numbers x % p would be odd -- they 
would not be random in that sense.

• How to get x?  Since the content of any register is ultimately an integer value, 
there are many ways to do it.  We can extract an int value by taking some of 
the bits of the datum, as long as we are extracting from a part that varies for 
different data in the address space.  We can use arithmetic operations -- 
multiplying one part of the datum by another, for example. 

• The key goal is to get a value that has nothing to do with the datum’s meaning. 



Resolving Collisions by Chaining

• What can we do when more than one address goes to the same hash value?  
The simplest method is called chaining and consists of keeping all the 
addresses for a given hash code in a linked list.

• If we used our first-letter hash function and were storing names of dogs, how 
would we decide whether “Balto” was being stored?  We would look at the 
list for “B” -- if it is empty, Balto is not there, and if not, we search the list.  On 
average, we will be searching a list only 1/26 the size of our entire set.

• If we could keep all the lists to O(1) size, we would be able to insert and 
delete in O(1) time, better than the O(log n) for binary search trees.  Even if 
one or two lists are large, the average size of a list is the number of addresses 
stored divided by the number of hash addresses.  We usually choose the size 
of the hash table so that this load factor is less than one.

• A nice trick is to use an overflow area and implicit pointers to store the lists.



Resolving Collisions by Open Addressing

• If our load factor is less than one, there are open spaces all over the hash 
table if we can just find one.  If entries x and y both map to hash value h, we 
could store one of them at h and the other in h+1, if the latter position is 
vacant.  If it is not, we could use h+2, or h+3, until we find an available place.

• When we are looking for an entry, we compute its hash value h, then look at 
locations h, h+1, h+2, and so forth until either (a) we find the item or (b) we 
find an open position and can give up.  In effect we are simulating a linear list 
in the table, and are making a linear search for our item.

• There is an open location somewhere unless the hash table is full, and if the 
hash function behaves randomly and the table is only half full, we would 
expect most of our simulated lists to be small, and their average size would 
be O(1).  But this linear probing has a problem -- different lists that overlap 
effectively merge to make even larger lists.



Variants of Open Addressing

• Linear probing places the i’th address mapped to hash code h in location h + 
i, a linear function of i.  We could use a quadratic function, such as mapping it 
to h + i^2, instead.  This will reduce clustering by reducing interaction 
between different lists.  If h + i^2 happens to be equal to h’ + j^2, the lists for 
h and h’ have intersected.  But the next location in the h list is h + (i+1)^2, and 
the next location in the other list is h’ + (j+1)^2, a different number.  This is 
called quadratic probing.

• A similar system is double hashing, where we choose a different linear 
function for each item using a second hash function.  If x maps to h and 
location h is occupied, we try locations h + s, h + 2s, h+3s, and so forth, 
where s is the value of the second hash function on x. 

• Note that open addressing does not allow us to delete elements because the 
implicit linear list would be broken and elements in it would be stranded.


