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Defining and Implementing Heaps

• The Heap Conditions on a Binary Tree

• HeapADT and its Operations

• The LinkedHeap Class

• Adding and Removing in the Linked Heap

• Adding in the Array Heap

• Removing in the Array Heap



The Heap Conditions on a Binary Tree

• A heap is a complete binary tree where each node holds an element from an 
ordered base type.  In a minheap (defined by the code in L&C), the smallest 
element is at the root and each parent is less than or equal to its children.  In 
a maxheap (as you will use in Project #7), the greatest element is at the root 
and each parent is greater than or equal to its children.

• Remember that a complete binary tree has all its leaves at two adjacent 
levels, and has its leaves at the lower level left-justified.  If we place a tree 
structure on the numbers {0, 1,..., n-1} by making the two children of i the 
nodes 2i+1 and 2i+2, we get a complete binary tree with n nodes.

• All complete binary trees have the same shape, but there are in general many 
ways to place a given data set in a heap.  As long as the heap condition is 
met at each node, nodes that are not ancestor and descendant may be in any 
relative order.



HeapADT and its Operations

• If we add an element to a heap that has n nodes already, the heap has to 
expand into position n because it must remain a complete binary tree.  But 
the new element may not belong there.

• The basic plan is to put the new element there and promote it as necessary 
until it fits into its new place.  Promoting means exchanging with its parent.

• If we remove the minimum element from an n-node heap, it is position n-1 
that must eventually be vacated.  The basic plan is to take the element from 
position n, put it into the hole at the root, and let it fall down to a correct 
position.  We move it down by exchanging it with the larger of its children.

public interface HeapADT<T> extends BinaryTreeADT<T> {
   public void addElement (T obj);
   public T removeMin( );
   public T findMin( );



The LinkedHeap Class

• We make our heap from HeapNode objects, which are BinaryTreeNode 
objects augmented with a parent pointer.  The LinkedHeap is then a 
LinkedBinaryTree with an additional pointer lastNode to the last leaf.

• The addElement operation uses two helper methods -- one to find the 
parent of the node to be inserted and one to restore the heap conditions after 
a new last node has been added.

public void addElement (T obj) {
   HeapNode<T> node = new HeapNode<T> (obj);
   if (root == null) root = node;
   else{HeapNode<T> nextParent = getNextParentAdd( );
      if (nextParent.left == null) nextParent.left = node;
      else nextParent.right = node;}
   lastNode = node; 
   count++;
   if (count > 1) heapifyAdd( );}



Helper Methods for Adding in a LinkedHeap

• Here is the method to locate the parent of the node that will be inserted (the 
parent of the node after lastNode in level order).  Note the casts whenever 
we reference the left or right field of a HeapNode object -- since these 
are BinaryTreeNode fields their type is BinaryTreeNode.

private HeapNode<T> getNextParentAdd ( ) {
   HeapNode<T> result = lastNode;
   while ((result != root) && (result.parent.left != result))
      result = result.parent;
   if (result != root)
      if (result.parent.right == null) result = result.parent;
      else {result = (HeapNode<T>) result.parent.right;
         while (result.left != null) 
            result = (HeapNode<T>) result.left;}
   else while (result.left != null)
      result = (HeapNode<T>) result.left;}
   return result;}     



Adding and Removing in the Linked Heap

• The addElement operation needs one more helper, below, which moves a 
too-small value from lastNode to its proper position.

• The removeMin operation also uses two helper methods.  It returns the 
element at the root, finds the new last node, makes the old last node null, 
puts its value at the root, and reheapifies.  The heapifyRemove method fills 
the hole at the root by successively promoting as many elements as needed. 
We won’t do the code for removeMin here.

private void heapifyAdd( ) {
   T temp;
   HeapNode<T> next = lastNode;
   temp = next.element;
   while ((next != root) && (((Comparable) temp).compareTo
                             (next.parent.element) < 0)) {
      next.element = next.parent.element;
      next = next.parent;}
   next.element = temp;}



Adding in the Array Heap

• We add the new element in the position after the last, then just heapify by 
promoting the new value as long as it is too small.  We compute parent nodes 
arithmetically as usual for this implementation.

public void addElement (T obj) {
   if (count == tree.length) expandCapacity( );
   tree [count] = obj;
   count++;
   if (count > 1) heapifyAdd( );}

private void heapifyAdd( ) {
   int next = count - 1;
   T temp = tree[next];
   while ((next != 0) && (((Comparable) temp).compareTo
                           (tree[(next-1)/2]) < 0)) {
      tree[next] = tree[(next-1)/2];
      next = (next - 1)/2;}
   tree[next] = temp;}



Removing in the Array Heap

• Again the main effort is to reheapify once we create a problem by putting the 
element from the last node in the root position to replace the one we take out.

public T removeMin( ) throws EmptyCollectionException {
   if (isEmpty( )) throw new EmptyCollectionException (“Heap”);
   T minElement = tree[0];
   tree[0] = tree [count - 1];
   heapifyRemove( );
   count--; return minElement;}

private void heapifyRemove ( ) {
   T temp; int node = 0, left = 1, right = 2, next;
   if ((tree[left] == null) && tree[right] == null) next = count;
   else if (tree[left] == null) next = right;
   else if (tree[right] == null) next = left;
   else if (((Comparable) tree[left]).compareTo(tree[right]) < 0)
      next = left;
   else next = right;
   temp = tree[node];
   // move “next” down as long as its element is < temp’s



The Rest of the heapifyRemove Method

• We fill the hole by promoting the smaller child into it and moving the hole 
downward.  We get larger and larger elements in our hole until we either leave 
the tree entirely or get an element larger than or equal to “temp”.  If we 
replace the first of these by “temp”, we preserve the heap property.

while ((next < count) && 
       (((Comparable) tree[next]).compareTo (temp) < 0)) {
   tree[node] = tree[next];
   node = next; left = 2*node + 1; right = 2*(node + 1);
   if ((tree[left] == null) && (tree[right] == null))
      next = count;
   else if (tree[left] == null) next = right;
   else if (tree[right] == null) next = left;
   else if (((Comparable)tree[left]).compareTo(tree[right]) < 0)
      next = left;
   else next = right;}
tree[node] = temp;}


