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Software Engineering Overview

• Leftover from Lecture 2: dog example, methods, the call stack, exceptions

• Software versus Programs

• Software Engineering versus Engineering

• Eight Goals of Software Quality



Dynamic Typing Example

public class Dog {
   public void bark {
      System.out.println(“Woof!”);}}
public class Terrier extends Dog {
   public void bark {
      System.out.println(“Yip!”);}
   public void dig {}}

Dog cardie = new Dog();
Dog duncan = new Terrier();
cardie.bark(); // Woof!
duncan.bark(); // Yip!
cardie.dig(); // won’t compile
duncan.dig(); // won’t compile
Terrier d = (Terrier) duncan;
d.dig(); // works
d.bark(); // Yip!
Terrier c = (Terrier) cardie; // compiles, ClassCastException



• When one method calls another, the context of the first is saved to return to.

• If that second method calls a third, both must be saved.  When we restore 
context, we return to the one that was saved last.

• When we save a bunch of things and only want to access the last-saved one 
first, we need a stack.  

• An exception interrupts a method.  If the exception can be thrown, it goes to 
the calling method, where it might stop execution or be thrown to the method 
calling that, and so on.

• The operating system prints the call stack when an exception stops 
execution -- which methods were in progress when the exception happened.

The Call Stack and Exceptions



Back to Software Engineering	

• What is software?  How is it different from CMPSCI 121 or 187 programs?

• Wikipedia (this week):  “Software is a conceptual entity which is a set of 
computer programs, procedures, and associated documentation concerned 
with the operation of a data processing system.”

• A single program solves a single data processing problem, with specified 
input and output.  The programs in a piece of software may have different 
users, different desired behaviors, different versions, etc.

• Note “procedures”, “associated documentation” -- everything in the system 
but the hardware.

• Examples: SPIRE, Mac OS X, Civilization, Facebook, the Internet protocol...



Software Engineering versus Real Engineering

• Engineering is the application of science and mathematics to affect reality, 
particularly by constructing artifacts.

• If you wanted to build a bridge across the Connecticut from Hatfield to 
Hadley, a civil engineer could give you a variety of designs and cost and 
building time estimates for each.

• “Software engineers” apply science and engineering to build artifacts, but 
they are very bad at estimating cost or completion time.

• Real engineers usually apply known techniques and materials with known 
characteristics -- software engineers not so much.

• Breakthrough software, e.g. Facebook, changes the environment it exists in.



Aspects of Software Quality

• Lewis and Chase list eight in Section 1.1: correctness, reliability, 
robustness, usability, maintainability, reusability, portability, and 
efficiency.

• Quality is in the eye of the stakeholder: maybe a paying customer, maybe 
not.  Developers and maintainers care about the internals, users about the 
observable behavior.

• Data structures are reusable components, so after this lecture we will focus 
most on reliability, robustness, reusability, and efficiency.



Correctness

• A program is correct if it meets its specification: in this course we’ll have 
fairly simple specifications, and it will be fairly easy to determine correctness 
of your programs.

• In CMPSCI 320 you will see that specifying the desired behavior of software 
is at least as hard as creating software with that behavior.

• A truly complete specification would deal with all possible anomalous inputs 
to the system, and how it should deal with each.  We won’t worry that much 
about strange inputs in our programs here.

• In general we determine correctness by a combination of testing and 
analysis.  One reason to study mathematical technique, as in CMPSCI 250, is 
to be able to formally prove things about the behavior of programs.



Reliability	

• A software failure is “any unacceptable behavior that occurs within 
permissible operating conditions” -- reliability is the relative absence or 
rareness of software failures.

• Absolute reliability is usually impossible in the real world, with the limits on 
our ability to create correct programs, wildly varying conditions of use, and 
even malicious attempts to deny service or break data security.

• Real engineers, who have been designing and managing life-critical systems 
for centuries, tend to look down on software engineering’s performance.

• Fatal software failures are rare, but costly ones are fairly frequent and 
annoying ones are commonplace.



Robustness

• How well does the software handle conditions for which it was not specifically 
designed?

• Users can’t be expected to follow strict protocols, and they get annoyed with 
software that punishes small deviations from the expected.

• But making assumptions about what the user meant can also be dangerous.

• Error handling should minimize the disruption from bad input, e.g., ask the 
user to reenter it rather than crash the system or start erasing things.

• The need for robustness varies, and a good specification says how important 
it is and when.



Usability

• When computers are used by humans, good software design will take 
account of what the humans want, how they perceive things, and how they 
learn.

• There is a whole field of human-computer interaction (HCI), which we 
introduce in CMPSCI 325.  It integrates art with engineering, and focuses 
most on user interfaces.

• Most of our knowledge about HCI is empirical -- we look at what works in the 
marketplace, try to survey users, beta-test products, etc. 

• The visionaries (Gates, Jobs, Berners-Lee, Zuckerberg) see this in advance.

• User interfaces are hard and not our focus in 187, so this isn’t a priority for us.



Maintainability

• Software has a life cycle of specification, design, development, testing, 
maintenance, and obsolescence.

• As it is used, possibly for years, requirements change, improvements are 
thought of, and errors are corrected -- most likely not by the original 
developers.

• The more sense the code makes to someone who didn’t write it, the easier it 
is to maintain.

• The key technique for maintainability is modularity.  Pieces of the software 
must have clearly defined interfaces with each other and must be 
understandable as abstractions.  We will see this concept a lot, and it is 
inherent in the Java language.



Reusability

• It is expensive and time-consuming to solve the same problem twice.

• Well-known, well-tested solutions to specific problems can and should be 
reused.  Sometimes you can use commercial, off-the shelf software.

• To make something more reusable, write programs to solve the widest, most 
general problem possible.

• We can contrast top-down with bottom-up design.  The former takes a big 
problem and breaks it into pieces until the pieces can be solved.  The latter 
builds up a set of tools and puts them together to solve larger and larger 
problems.  A good design process, even for a CMPSCI 187 project, usually 
uses both.  



Portability

• Good software can be used in a variety of different environments.

• Different computers have different machine languages, but with high-level 
languages, compilers, and interpreters, the same program can run on each.

• Java was designed with the web in mind -- a Java program does not “know” 
what sort of computer it is running on.

• Commercial software usually has to access its operating system in ways 
more complicated than our programs do (e.g., input and output) so 
commercial programs have versions for Windows, Mac, etc. and porting a 
piece of software is a major undertaking.

• You can emulate one OS on another, but there is a cost in efficiency.



Efficiency

• Computer programs use resources, such as time and memory.

• You may know how to solve a problem, and even write correct code 
implementing the solution, but be unable to solve it in the real world because 
your code uses too many resources.

• Typically we look at a problem where the input size is a variable.  As input 
size increases, time and memory usage increase, to where there is a limit on 
the practically feasible size.

• With reused components like data structures, understanding resource use is 
vital.  In this course we’ll begin the study of computational complexity, the 
science of how resource consumption, particularly running time, increase with 
input size.


