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Tree Vocabulary

• Trees are made up of nodes.  The key property of a tree is that every node 
except for one, the root, has exactly one parent.  We use genealogical 
language throughout, so that children of the same node are siblings, a node 
that can be reached by following parent pointers is an ancestor, and a node 
whose ancestor you are is your descendent.

• Nodes with no children are called leaves, and nodes with children are 
internal nodes.  The root is at level 0, and the level of any other node is the 
number of parent pointers you must follow to reach the root.  The height of a 
tree is the largest level number of any node in it.

• A tree is binary if every internal node has either one or two children, and it is  
k-ary if every node has at most k children.  L&C often implicitly assume that 
every internal node has exactly two children, but this isn’t a math course...



Kinds of Binary Trees
• A binary tree is called balanced in L&C if its leaves are all on one level or on 

two adjacent levels.  A balanced tree of height h has at most 2^h leaves, and 
the fewest it can have (with no unary nodes) is 2^{h-1} + 1, still O(2^h).  The 
height of a balanced tree with n leaves, or with n nodes, is O(log n).

• L&C call a binary tree complete if it is balanced and the nodes are left-
justified.  Complete binary trees will turn out to have a convenient 
representation as arrays.  

• L&C call a binary tree full if it is complete, has all its leaves on the same level, 
and has two children for each internal node.  (This is often called a “complete 
binary tree” elsewhere.)  Such a tree of height h has exactly 2^h leaves, and 
since a tree with n leaves has n - 1 internal nodes, has exactly 2^{h+1} - 1 
total nodes

• These concepts extend naturally to k-ary trees, with k^h leaves for height h.



Basic Strategies to Implement Trees

• The most obvious way to implement trees is for each node to link to its 
parents and children, just as the nodes in a doubly linked list link to the 
preceding and following nodes.  But especially with very large trees, there are 
advantages to representing trees as arrays -- they are more likely to remain in 
the fast memory of the machine.  But how do we represent a non-linear tree 
in a linear structure like an array?

• If we number the root 0 and define the children of any node i to be nodes 2i + 
1 and 2i + 2, and the parent of node i to be node (i - 1)/2 (unless i = 0), we get 
a tree structure on the numbers {0,...,n-1}.  This turns out to be what L&C call 
a complete binary tree.  By leaving gaps in the array we can get unbalanced 
trees as well.

• If the nodes are numbered 0 to n - 1, we can store pointers as int values in 
an array, simulating the links we would have with Java pointers.  This can 
make it easier, for example, to read or write the whole tree to or from a file.



Ways to Traverse a Tree
• There are several ways to traverse the nodes of a binary tree in order -- this 

will be the subject of next week’s Discussion #10 but we’ll define/review them 
here.  Recursion is the easiest way to define them.

• Perhaps the most natural order is left-to-right or inorder.  We visit the nodes 
of the left subtree, then visit the root, then visit the nodes of the right subtree.  
Of course visiting the left subtree means visiting its left subtree, root, and 
right subtree in that order, and so on.

• The preorder and postorder traversals are similar.  In preorder we visit the 
root, then the left subtree, then the right subtree.  In postorder the root comes 
last.  These correspond to prefix, infix, and postfix notation for expressions, 
as we’ll see in the next lecture.

• Level order visits the root, then all nodes at level 1, then all at level 2, etc.



Implementing Trees With Links

• This gives the idea -- note L&C miscalls the last method numChildren.

public class LinkedBinaryTree<T> {
   protected BinaryTreeNode<T> root;
   protected int count;
   public LinkedBinaryTree( ) {count = 0; root = null;}
   public LinkedBinaryTree (T element) {
      count = 1; root = new BinaryTreeNode<T> (element);}}

public class BinaryTreeNode<T> {
   protected T element;
   protected BinaryTreeNode<T> left, right;
   public BinaryTreeNode (T obj) {
      element = obj; left = right = null;}
   public int descendants ( ) {
      int ret = 0;
      if (left != null) ret = 1 + left.descendants( );
      if (right != null) ret += 1 + right.descendants( );}}



Finding an Element in a Linked Tree

• We use a helper method and a simple recursive definition -- the target is in 
the tree if it is at the root, in the left subtree, or in the right subtree.

public T find (T target) throws ElementNotFoundException {
   BinaryTreeNode<T> current = findAgain (target, root);
   if (current == null) throw new ElementNotFoundException( );
   return current.element;}

private BinaryTreeNode<T> 
      findAgain (T target, BinaryTreeNode<T> next) {
   if (next == null) return null;
   if (next.element.equals (target)) return next;
   BinaryTreeNode<T> temp = findAgain (target, next.left);
   if (temp == null) temp = findAgain (target, next.right);
   return temp;}



Implementing Trees With Arrays

• The find operation is a simple linear search, as the array is unordered.

public class ArrayBinaryTree {
   protected int count;
   protected T[ ] tree;
   public ArrayBinaryTree( ) {
      count = 0; tree = (T[ ]) new Object [capacity];
   public ArrayBinaryTree (T element) {
      super( ); count = 1; T[0] = element;}

   public T find (T target) throws ElementNotFound Exception {
      T temp = null; boolean found = false;
      for (int ct = 0; ct < count && !found; ct++)
         if (target.equals (tree[ct])) {
            found = true; temp = tree[ct];}
      if (!found) throw new ElementNotFoundException ( );
      return temp;}}



Inorder Iterators

• We can make an iterator by copying the elements to a list using inorder, then 
creating an iterator for the list.  The method inorder copies the subtree 
under node into list, an unordered list.
// in LinkedBinaryTree<T>
protected void 
     inorder (BinaryTreeNode<T> node, ArrayList<T> list) {
   if (node != null) {
      inorder (node.left, list);
      list.addToRear (node.element);
      inorder (node.right, list);}

// in ArrayBinaryTree<T>
protected void inorder (int node, ArrayList<T> list) {
   if (node < tree.length)
      if (tree[node] != null) {
         inorder (node*2 + 1, list);
         list.addToRear (tree[node]);
         inorder (node*2 + 2. list);} 


