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Introduction to Searching and Sorting

• L&C’s SortingAndSearching Class

• Static Generic Methods

• Linear Search of an Array

• Binary Search of a Sorted Array

• Comparing Search Algorithms

• A Lower Bound for Searching

• Some O(n^2) Sorting Algorithms



L&C’s SortingAndSearching Class

• We’ll now spend considerable time on two basic operations for a collection.  
Searching is determining whether a particular object is in a collection, and 
sorting is transforming a collection until it is in order (for a given ordering).

• How shall we reuse code when we search and sort on different classes?  We 
don’t want to write separate methods to do this for every class, but this is a 
different situation from the data structures we have studied so far.

• Pre-generic Java had an interface Comparable for objects that could be 
searched or sorted by comparing one object to another.  There were 
algorithms to sort or search arrays of Comparable objects, but making an 
array so general loses some of the advantages of data typing.

• We’d like generic methods that can sort objects of any suitable type, but 
where should these methods live?  In a SortingAndSearching class.



Static Generic Methods

• We could have a generic class SortingAndSearching<T extends 
Comparable<? super T>, like the classes we had for ordered lists.

• But it would be awkward (and possibly costly) to instantiate an object of this 
class every time we wanted it.  Instead we want old-fashioned methods that 
take input and produce output, without being attached to an object at all.

• A generic method can live in a class, and be declared static so that it does 
not need an object of that class.  Note that we need to define the type 
variable T before we can use it in the types of parameters.

• We call this method as SortingAndSearching.LinearSearch(...)

public static <T extends Comparable<? super T>> boolean
   linearSearch (T[ ] data, int min, int max, T target)



Linear Search of an Array
• The simplest search idea is to check each element of an array in turn, to see 

whether it is the item we have in mind.  Clearly this takes O(n) time in the 
worst case.

• In this algorithm’s favor is that it can easily be adapted to a linear structure, 
and that it makes no assumptions about the structure it is searching.  Against 
it is that O(n) time is slow.

public static <T extends Comparable<? super T>> boolean
      linearSearch (T[ ] data, int min, int max, T target) {
   int index = min;
   boolean found = false;
   while (!found && index <= max) {
      if (data[index].compareTo(target) == 0) found = true;
      index++;}
   return found;}

 



Binary Search of a Sorted Array

• We get a faster search of an array if it is sorted -- first check the middle 
element.  If it is too high or too low, search the half of the array that contains 
the target if it is there at all.  

• This is a simple use of recursion, with the base case being an array of length 
1.  In the worst case we need log n recursions to go from size n to size 1.

public static <T extends comparable<? super T>> boolean
      binarySearch (T[ ] data, int min, int max, T target) {
   boolean found = false;
   int midpoint = (min + max) / 2;
   if (data[midpoint].compareTo (target) == 0)
      found = true;
   else if (data[midpoint].compareTo (target) > 0)
      if (min <= midpoint - 1)
         found = binarySearch (data, min, midpoint - 1, target);
   else if (midpoint + 1 <= max)
      found = binarySearch (data, midpoint + 1, max, target);
   return found;}



Comparing Search Algorithms

• Linear search is more generally applicable, since it does not require random 
access to the inputs, and is certainly simpler.

• Binary search is faster, even for n = 3 with two instead of three comparisons 
in the worst case.  But the advantage is small for small lists and may not 
matter.  In particular it may not justify the overhead effort to keep the list 
sorted.  (For example, note that using our linear search algorithm requires the 
base type T to have an order on it -- we could always define some kind of 
order on it but that might be more effort than the savings from binary search 
would justify.)

• If the type has an order, we can always run some sorting algorithm on any 
linear structure to make it sorted.  The more searches we plan to do later, the 
more likely that sorting the data and enabling binary searches will pay off. 



A Lower Bound for Searching

• Sometimes we are able to prove an algorithm to be optimal, meaning that no 
other algorithm can do better under certain assumptions.

• If we are searching a sorted array of length n, binary search requires us to 
look at about log n array elements in the worst case, comparing each with the 
target element.  In fact if n = 2^k - 1 for some integer k, we can search with 
exactly k probes.  (Examples: k = 1 and n = 2^1 - 1 = 1, one probe is both 
necessary in the worst case and sufficient.  For k = 2 and n = 2^2 - 1 = 3, two 
probes are necessary and sufficient.)

• To show that we need k probes to search n = 2^k - 1 elements, we use an 
adversary argument.  If you claim to have an algorithm to do better, I need to 
show that there exists a case where your algorithm either uses k or more 
probes, or gets the wrong answer.  The easiest way to do this is to construct 
the bad case in response to the questions that the algorithm asks about the 
data.  (I’ll describe the example of the dishonest guessing game.)



Some Simple Sorting Algorithms
• The problem of sorting is a basic one -- we are given n items in an arbitrary 

order and need to put them in order.  We’ll later see a number of ways to do 
this in O(n log n) time, but first we’ll see how some basic ideas accomplish 
the job in O(n^2) time.

• Given an ordered list or other priority queue, we can put elements into the 
structure in any order we like and then get them out in order.  For an ordered 
list this is called insertion sort and takes O(n^2) because each insertion 
takes O(n).  Using an O(log n) priority queue (when we get one) will allow this 
idea to sort in O(n log n) time.

• Back in Discussion #2 we sorted some containers by repeatedly finding the 
smallest one in the collection and removing it.  This general method is called 
selection sort and also takes O(n^2) time if we need to take O(n) time for 
each search operation.



More on Simple Sorting Algorithms

• Bubble sort is another O(n^2) algorithm whose only virtue it its simplicity.  We 
make repeated passes over the set, exchanging any pair that is out of order. It 
is not hard to show that n - 1 passes of this kind leave the data sorted.

• Unlike insertion or selection sort, bubble sort leads to an O(n) time parallel 
algorithm -- if many compare-and-swaps can be done at once.  For example, 
suppose n people are standing in a line and we want to sort them by height.  
We can do this in n - 1 rounds as follows:  On even-numbered rounds, each 
even-numbered person compares heights with the person after them and 
changes places if they are shorter.  On odd-numbered rounds, each even-
numbered person compares heights with the person before them and 
changes places if they are taller.  

• We will argue in Discussion #9 that you need at least O(n log n) time to sort n 
items by comparisons.  Here we use O(n) time, but O(n^2) comparisons.


