
CMPSCI 187: Programming With Data Structures

Lecture #17: The List ADT’s
19 October 2011

The List ADT’s

• Kinds of Lists: Ordered, Unordered, Indexed

• Operations Common to All Lists

• Iterators

• Adding to an Ordered List

• Adding to an Unordered List

• Polymorphism Again

Kinds of Lists: Ordered, Unordered, Indexed

• An ordered list is one where the elements are sorted according to some
meaningful rule. We need a definition of what it means for one element to be
“less than” another -- then we insist that every element of the list is “less than
or equal to” the one that comes after it.

• Examples of orderings are alphabetical order on a String field, numerical
order on a numerical field, earliest or latest time entering the list (making a
queue or stack), or some combination of factors.

• If a list is unordered, the elements still come in some order because the list is
a linear structure. But the order has no particular meaning, and the structure
does not have to preserve any properties of it.

• An indexed list is one where every element is numbered, as in an array.

Operations Common to All Lists

• The removeFront and removeRear operations of a deque reappear in
L&C’s ListADT interface, under the names removeFirst and
removeLast. The first and last operations occur under the same
names, as do isEmpty, size, and toString.

• General lists have a new operation remove, which takes a potential element
as a parameter and removes it from the list, also returning it. Although their
interface listing does not say so, remove throws an
ElementNotFoundException if the parameter element is not in the list.

• We can avoid throwing this exception by first running the method contains,
which returns a boolean telling whether the parameter element is in the list.

Iterators

• The final operation we have that is common to all lists is to produce all of its
elements one at a time, without changing the list itself. Java offers a
particular format for this called an iterator.

• The iterator method of a list returns a new Iterator object. This
object implements the Iterator interface, which has the two methods
public boolean hasNext() and public T next(). The first tells
whether there are elements yet to be returned, and the second returns the
next element in sequence.

• You are never guaranteed that an iterator will give you elements in a particular
order, only that it will give you each element exactly once.

• What should happen if another process alters the list while an iterator exists?

Adding to an Ordered List

• If we have an ordered list and a new element, there is only one place where
the new element can go and keep the list ordered. (If there are elements
“equal” to the new one already in the list, the new one could go anywhere
among them, but in that case it probably doesn’t matter which is which.)

• Thus the OrderedListADT interface has only one add method, which
takes an element as parameter and inserts that element into the correct
position. This interface extends ListADT, and has only the one new
operation.

• But OrderedListADT assumes that there is a comparison operation on the
elements, because its implementations will need to use the compareTo
method of the base class. We could insist that the class of the objects
implements the Comparable interface, but actually it’s more complicated.

Adding to an Unordered List

• Let’s first look at the add operations for an unordered list. Since it is now
legal to add an element anywhere in the list, we can now have the
addToFront and addToRear operations that we had with deques.

• We also have a method addAfter that takes an extra parameter target, an
element that is already in the list (if the target is not there we get an
ElementNotFoundException). The new element goes into the list directly
after the target element.

• All these operations also make sense for indexed lists, along with additional
ones to add or remove elements at particular indices. Note that when we add
or remove an element, lots of indices may need to change to fill in the gap or
to make room for the new element.

Polymorphism Again

• These list interfaces are generic, so that the interface OrderedListADT
defines types OrderedListADT<T> for any class T, in principle. But we
can’t have an ordered list without a way to compare elements.

• One way to handle this would be to replace the type parameter <T> with <T
extends Comparable<T>>. This would mean that the generic structure
would only work when T is a class that supports the compareTo operation
with other T elements.

• Just having a list of Comparable objects isn’t good enough, because
implementing Comparable just means that you have a compareTo
operation, not that you can always compare one such object to another.

How We Deal With Comparability

• In their implementations of the ordered list classes, L&C take the same
approach as the classes in Collections. Each interface or class is generic,
and defined for every possible T.

• When we want to compare two T elements, we cast one of them into a
Comparable<T> and put it in a variable of type Comparable<T>. If this
works, the compiler will know that we can compare this element to a T
element. If it does not work, we will get a ClassCastException.

• This means that the classes we put into ordered lists will generally implement
the Comparable interface for themselves. If we do this, the casts will always
work, and the code outside of the classes will be simpler.

