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Abstract—The Lovasz Local Lemma (LLL) is a powerful core, we can avoid a fraction of bad events that is higher
tool that gives sufficient conditions for avoiding all of a than the expectation. MAX k-SAT is an example of this.
given set of “bad” events, with positive probability. A series

of results have provided algorithms to efficiently constru¢

structures whose existence is non-constructively guaraeéd |
by the LLL, culminating in the recent breakthrough of

Moser & Tardos. We show that the output distribution p .
of the Moser-Tardos algorithm well-approximates thecon- | € Well-known Lovasz Local Lemma (LLL) [14] is a

ditional LLL-distribution — the distribution obtained by Powerful probabilistic approach to prove the existence
conditioning on all bad events being avoided. We show of certain combinatorial structures. Its diverse range
how a known bound on the probabilities of events in this of applications include breakthroughs in packet-routing
dlstnb_utlon can bhe usec_i for further probabllls_nc analysis [19], a variety of theorems in graph-coloring including

and give new constructive and non-constructive results. list (;oloring frugal coloring, total coloring, and colog

We also show that when an LLL application provides a graphs with lower-bounded girth [23], as well as a

small amount of slack, the number of resamplings of the host of other applications where probability appears at

Moser-Tardos algorithm is nearly linear in the number of . -
underlying independent variables (not events!), and can first sight to have no role [4]. Furthermore, almost all

thus be used to give efficient constructions in cases whereKnown applications of the LLL have no alternative proofs
the underlying proof applies the LLL to super-polynomially ~ known. While the original LLL was non-constructive —

many events. Even in cases where finding a bad event thatit was unclear how the existence proofs could be turned
holds is computationally hard, we show that applying the 4 holynomial-time algorithms — a series of works [1]
algorithm to avoid a pc_)lynomlal-3|zed “core” subset of _bad 9], [13], [22]-[26], [28] beginning with Beck [9] and '
events leads to a desired outcome with high probability. LoD . ! 9 g

culminating with the breakthrough of Moser & Tardos

. T ; (MT) [25] have led to efficient algorithmic versions
the first constant-factor approximation algorithm for the f t h fs. H th | LLL
Santa Claus problem by making an LLL-based proof of or mOS. suc pr‘?o S. However, there ‘f,"re severa
Feige constructive. We provide Monte Carlo algorithms @pplications to which these approaches inherently cannot
for acyclic edge coloring, non-repetitive graph colorings apply; our work makes progress toward bridging this
and Ramsey-type graphs. In all these applications the gap, by uncovering and exploiting new properties of
algorithm falls dlrectly_out of the non-constructive LLL- [25]. We also obtain what are, to our knowledge, the
based proof. Our algorithms are very simple, often provide first algorithmi licati f the LLL wh f
better bounds than previous algorithms, and are in several Irst algorithmic applications of the where a ?W
cases the first efficient algorithms known. of the bad events have to happen, and where we aim to

keep the number of these small.

. INTRODUCTION

We demonstrate this idea on several applications. We give

As a second type of application we consider settings beyond
the critical dependency threshold of the LLL: avoiding Essentially all known applications of the LLL use the
all bad events is impossible in these cases. As the f'rStfoIIOWing framework. LetP be a collection ofn mu-

(even non-constructive) result of this kind, we show that by . .
sampling from the LLL-distribution of a selected smaller tually independent random variablés’s, P, . .. ’_Pn}'
and let A = {A,As,...,A,} be a collection of
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a choice: (i) initially choose thé’; independently from used to give interesting (nonconstructive) results. Our
their given distributions; (iiwhile the current assignmentnext main contribution is that the MT algorithm has
to P does not avoid all thel;, repeat arbitrarily choose an output distribution (say)’) that “approximates” the

a currently-trueA;, and resample, from their productLLL-distribution D: in that for everyB, the sameupper
distribution, the variables irP on which 4; depends. bound f4(B) - Pr{B} as above, holds iD’ as well.
The amazing aspect of MT is that the expected numbe&his can be used to make probabilistic proofs that use
of resamplings is small [25]: at mostoly(n,m) in the LLL-condition constructive.

all known cases of interest. However, there are twlg

problems with implementing MT, that come up in some roblem (b)_’ n all cases k”OV_V” to us, comes from
applications of the LLL: problem (a): it is easy to test if angiven A; holds

currently (e.g., if a given subset of vertices in a graph

(a) the number of eventsn can be superpolynomial is a clique), with the superpolynomiality @t being the
in the number of variables:: this can result in a @Pparent bottleneck. To circumvent this, we develop our

superpolynomial running time in the “natural” parameteﬁhird main contribution: the gen_eral Theorgm 111.4 that is
n 1 and, even more seriously, simple and directly a_pphcable in all LLL mstancc_eg that
allow a small slack in the LLL's sufficient conditions.
(b) given an assignment B, it can be computationally This theorem proves that a smalbly(n)-sized core-
hard (e.g., NP-hard or yet-unknown to be in polynomiajubset of the events il can be selected and avoided
time) to either certify that no4; holds, or to output an efficiently using the MT algorithm. Using the LLL-
index such that4; holds. distribution and a simple union bound over the non-

) ) , core events, we get efficient (Monte Carlo andiov C)
Since detection and resampling of a currently-bad eveerl‘lborithms for these problems

is the seemingly unavoidable basic step in the MT
algorithm, these applications seemed far out of reacfe develop two types of applications, as sketched next.
We deal with a variety of applications wherein (a) and/dpue to page limitations, we omit several details here;

(b) hold, and develop Monte Carlo (and in many caseglease see the extended version of this paper for these
RNC) algorithms whose running time is polynomialetails and all omitted proofs [17].

in n: some of these applications involve a small loss
in the quality of the solution. (We loosely letRNC A
algorithms” denote randomized parallel algorithms that

usepoly(n) processors and run i901yl0g(”) Fi_me, to A list of four applications follows; all of these have
output a correct solution with high probability.) Firstproblem (a), and all but the acyclic-coloring application

we show that the MT algorithm needs ord}(n”logn)  have problem (b). Most such results haR&/C' versions
many resampling steps in all applications that are knovgg \ell.

(and in most case®(n - polylog(n))), even whenm

is superpolynomial im. This makes those applicationsTh® Santa Claus ProbleniThe Santa Claus problem
constructive that allow aefficientimplicit representation 1S the restricted assignment version of the max-min
of the bad events (in very rough analogy with the usa Iocatlpn problem of |nd|V|5|_bIe.goods. The Santa Claus
of the ellipsoid algorithm for convex programs withass gifts that need to be distributed amonghildren.
exponentially many constraints but with good separatigrch child has a utility for each gift, which is either
oracles). Still, most of our applications have problem (bY. ©7 Some givenp; for gift j. The objective is to
For these cases, we introduce a new proof-concept ba&8§i9n €ach gift to some child, so that the minimum
on the (conditional) LLL-distribution— the distribution total utility received by any child is maximized. This
D on P that one obtains when conditioning on nb problem has received much attention recently [5]—[8],
happening. Some very useful properties are known fbfLl: [15]- The problem is NP-Hard and the best-known
D [4]: informally, if B depends “not too heavily” on approximation algorlthm_ dut_a to Bansal an::i ?v.mdenko
the events inA, then the probability placed oB by » [7] achieves an approximation factor 6f(3 =)
is “not much more than” the unconditional probabiliPy rounding a certain configuration LP. Later, Feige in
Pr{B}: at mostf(B) - Pr{B} (see (3)). Such bounds[1®] and Asadpour, Feige and Saberi in [5] showed

in combination with further probabilistic analysis can b&at the integrality gap of the configuration LP is a
constant. These results were obtained using two different

In is the parameter of interest since the output we seek is doe vanonconStrUCtNeapproaCh?S' "fmd left t_he question O_f
for each of Py, Ps, ..., Py. a constant-factor approximation algorithm open. This

. Applications that avoid all bad events



made the Santa Claus problem one of the rare instan§¢aad made constructive using MT). No interpolation
[16] in which the proof of an integrality gap did notbetween these was known before; among other results,
result in a approximation algorithm with the same ratiove show that if each clause shares a variable with at
We resolve this by making the nonconstructive LLLmost~ «2* /e other clauses fot < a < e, then we can
based proof of Feige [15] constructive (Section V) andfficiently construct an assignment to the variables that
giving the first constant-factor approximation algorithnviolates at moste In(a)/a + o(1)) - m - 2~* clauses for

for the Santa Claus problem. largek. (This is better than the linearity of expectation iff
G <€ it is easy to construct examples with= e where

one cannot do better than the linearity of expectation. See
[3] for the fixed-parameter tractability of MAX-SAT
above(1 — 27%)m satisfied clauses.)

Please see the full version [17] for details abo
the other three applicationdon-repetitive Coloring
of Graphs General Ramsey-Type Graphesnd Acyclic
Edge-Coloring
The above and related results for applications of the sym-
metric LLL, follow from the connection to the “further
B. Applications that avoid many bad events probabilistic analysis using the remaining randomness of

. . LLL-distributions” that we alluded to above.
Many settings require “almost all” bad events to be

avoided, and not necessarily all; e.g., consider MAX-

SAT as opposed to SAT. However, in the LLL contextC. Preliminaries & Algorithmic Framework

essentially the only known general applications were “all

or nothing”: either the LLLs sufficient conditions hold, We follow the general algorithmic framework of the
and we are able to avoid all bad events, or the LLLs0cal Lemma due to MT. As in our description at the
sufficient conditions are violated, and the only knowReginning of Section |, le® be a finite collection of mu-
bound on the number of bad events is the trivial ongally independent random variablds’, P, ..., P, }
given by the linearity of expectation (which does nodnd letA = {A;, 4s,..., Ay, } be a collection of events,
exploit any “almost-independence” of the bad events, &8ch determined by some subset?f For any event
does the LLL). This situation is even more pronouncef that is determined by a subset Bf we denote the
in the algorithmic setting. We take what are, to ousmallest such subset bypl(B). For any eventB that is
knowledge, the first steps in this direction, interpolating€termined by the variables iR, we furthermore write

between these two extremes. ['(B) = T'a(B) for the set of all eventsi # B in A
with vbl(A4) Nvbl(B) # 0.2 This neighborhood relation

While our discgssion here holds for all applicationg,quces the following standardependency graptor

of the symmetric LLL, let us take MAX~SAT as an ariaple-sharing graphon A: For the vertex setd let
illustrative example. (The LLL is defined in Section I-C, _ G 4 be the undirected graph with an edge between
but let us recall its well-known “symmetric” special Cas€eventsA, B € A iff A € T'(B). We often refer to events
in the setting of MT with? and A as defined near thej, 4 as pad eventsand want to find a point in the
beginning of Section I, iPr {A;} < p and A; depends ,ropapility space, or equivalently an assignment to the

on at mostd other A; for all i, thene-p- (d+1) <1 \arablesP, wherein none of the bad events happen. We
suffices to avoid all thed;.) Recall that in MAX#-SAT, il such an assignmentgood assignment

we have a CNF formula on variables, withm clauses o .
each containing exactly literals; as opposed to SAT, With these definitions the general (*fasymmetric”) ver-

where we have to satisfy all clauses, we aim to maximizon of the LLL simply states:

the number of satisfied clauses helre. The best genefgborem 1.1 (Asymmetric Lovasz Local Lemma)Nith
upper-bounds on the number of “violated events” (Ung p and T defined as above, if there exists an assign-
satisfied clauses) follow from the probabilistic methodyent of realsr : A — (0,1) such that

where each variable is set to True or False uniformly
at random and independently. On the one hand, the YA € A: Pr{A} <z(A) H (I1-xz(B)); (1)
linearity of expectation yields that the expected number BET(A)

g PR .
of unsatisfied clauses is -2 " (with a derandomization yhen, the probability of avoiding all bad events is at least
using the method of conditional probabilities). On th‘fIAeA(l ~ 2(A)) > 0 and thus there exists a good
other hand, if each clause shares a variable with Qésignment to the variables iA.

most2”* /e — 1 other clauses, a simple application of the
symmetric LLL shows that all clauses can be satisfied?t is important to note thaf3 itself may not be an element of.



We study several LLL instances where the number dtheorem II.1. If the LLL-conditions from Theorem I.1
events to be avoidedn, is super-polynomial im; our are met, then the LLL-distributiof is well-defined. For

goal is to develop algorithms whose running time iany eventB that is determined byP, the probability

polynomial inn which is also the size of the output -Prp{B} of B under D equals:

namely a good assignment of values to theariables.
We introduce a key parameter:

Pr{B\ /\ Z} < Pr{B} H 1—zc)"t (3)
5= ,Iaxnelﬁx(A) BQA)(l — z(B)). 2 AcA CeT(B)
here, Pr{B} is the probability of B holding under a

Note that without loss of generality < I because random choice ofP,, Py, ..., P,.

otherwise allA € A are independent, i.e., defined on

disjoint sets of variables. Indeed &f > 1 and there is The fact that the probability of an evedt does not

an edge in: betweend € A and 5 € A than we have change much in the conditional LLL-distribution when

17 z(A)(1 —x(B)) and 3 > z(B)(1 —x(A)), i.e., B does not depend on “too many’ € A is used a lot

11> (A1 —2(A) - x(B)(1 — x(B)) which is @ in the rest of the paper.

contradiction because(1 — z) < 1 for all . ) i
More importantly, the following theorem states that the

We allow our algorithms to have a running-time thagutput distributionD’ of the MT-algorithm approximates

is polynomial inlog(1/4); in all applications known the LLL-distribution D and has the very nice property

to us,§ > exp(—O(nlogn)), and hencelog(1/0) = that it essentially also satisfies (3):

O(nlogn). In fact because is an upper bound for . .

minae 4 P(A) in any typical encodings of the domains! heorem 11.2. Suppose there is an assignment of reals

and the probabilities of the variablelsg(1/5) will be ¢ A — (0,1) such that (1) holds. Lef3 be any

at most linear in the size of the input or the output. €vent that is determined bj. Then, the probability
that B was true at least onceduring the execution

of the MT algorithm on the events i, is at most
[I. LLL-D ISTRIBUTION Pri{B} (Ilcers) (1 —x¢))~ L. In particular, the prob-

) . i ability of B in the output distribution of MT obeys this
When trying to make the non-constructive Lovasz LOC%Jpper-bound.

Lemma constructive, the following straightforward ap-

proach comes to mind: draw a random sample for thgsing this theorem we can view the MT algorithm
variables inP until one is found that avoids all badyg 5n efficient way to obtain a sample that comes
events. If the LLL-conditions are met, this rejectionypproximately from the conditional LLL-distribution.

sampling algorithm certainly always terminates but berpjs efficient sampling procedure makes it possible to
cause the probability of obtaining a good assignmepiake proofs using the conditional LLL-distribution con-
is typically exponentially small, it takes an expectediryctive and directly convert them into algorithms. All

exponential number of resamplings and is_therefoggnstryctive results of this paper are based on Theorem
inefficient. While the celebrated results of [24], [25]}; 2 and demonstrate this idea.

are much more efficient, the above rejection-sampling
method has a major advantage: it does not just produce
an arbitrary assignment but provides a randomly chosen
assignment from the distribution obtained when one con-
ditions on no bad event happening. In the following, we

call this distribution the_LL-distribution or conditional o
LLL-distribution In several applications of the LLL, the number of bad

events is super-polynomially larger than the underlying
The LLL-conditions and further probabilistic analysis/ariables. In these cases we aim for an algorithm that
can be a powerful tool to obtain new results (constructivgil| runs in time polynomial in the number of variables,
or otherwise) like the constructive one in Section Vand it is not efficient to have an explicit representation
The following is a well-known bound on the probabilityof all bad events. Surprisingly, Theorem 1.1 shows that
Prp{B} that the LLL-distribution D places onany the number of resamplings done by the MT algorithm

eventB that is determined by variables i (its proof remains quadratic and in most cases even near linear in
is an easy extension of the standard LLL-proof [4]): the number of variables.

IIl. LLL A PPLICATIONS WITH
SUPER-POLYNOMIALLY MANY BAD EVENTS



Theorem 1ll.1. Suppose there is ane [0,1) and an Now it can be argued (see the full version [17] for

assignment of reals : .4 — (0,1) such that: details) that forl/2 < x4 < zp, <1,
VAe A:Pr{A} < (1-ex(4) [] a-xz(B)). (1l —xp,) < e (@aten), (6)
BeET(A)
So we get

With § denotingmin e 4 x4, we have

T:=> x4 <nlog(1/d). (4) wa(l = wp,)e TreAp\aun TB) < o7 Lpeap T8,
AcA using this with (5), we obtaid} ", 4, v5 <In(1/4) <
Furthermore: log(1/6) as desired.

1) if ¢ = 0, then the expected number of resamfeiven 'Fhe bound orfl’, part (1) foIIo_ws directly frqm
plings done by the MT algorithm is at mosthe main t_heorem of [25] and by a simple application of
vi = Tmaxaca =, and for any parameter Markov’s inequality.
A = 1, the MT algorithm terminates withidwy  part (2) now also follows from [25]. In section 5 of [25]
resamplings with probability at least—1/A.  jtjs shown that saving ah—e factor in the probability of

2) if e > 0, then the expected number of resamplingsyery resampling step implies that with high probability,
done by the MT algorithm is at mosk, = ng witness tree of siz&(1logy" ,. , 724-) occurs.
O(%log ), and for any parameted > 1, the Thjs easily implies that none of the variables can
MT algorithm terminates within\v, resamplings pe resampled more often. It is furthermore shown that
with probability 1 — exp(—A). without loss of generality allk:-values can be assumed

to be bounded away from by at leastO(e). This

Proof: The main idea of relating the quantiy  simplifies the upper bound on the expected running time
to n and § is to use: (i) the fact that the Va“able'tOn-O(llogZ). "]

sharing graplt is dense, and (ii) the nature of the LLL- ) ) _ ) _
conditions which force highly connected events to ha/eS mentioned following the introduction of in (2),
small probabilities and-values. To see that is dense, 108(1/d) < O(nlogn) in all applications known to us,

consider for any variablé < P the set of events and is often even smaller.
Ap ={A € AP € vbl(A)}, a) Remarks:1. The%ﬂxﬁ =) factor in the running
— T
and note that these events form a cliquedn time of part (1) of Theorem IIl.1 corresponds to the

expected number of times the evestgets resampled

until one satisfying assignment to its variables is found.
any P € P and show that) S, 4, 5 < log(1/), 1t s obviously unavoidable for an algorithm that has
WhICh. will clearly suffice. Recall from the dlsclussmnon'y black-box resampling and evaluation access to the
following (2) that we can assume w.l.o.g. thak 3. If - oyents I one alters the algorithm to pick a random
|Ap| = 1, then of cours& 5. 4, v < 1 <log(1/J).

assignment that satisfie$ (which can for example be
If |[Ap| > 1, let A € Ap have the smallest, value. omngted using rejection sampling, taking an expected
Note that by definition O( ) trials each time), this factor can be avoided.

Let us first prove the bound ofi. To do so, we fix

1
1—z(A)

A
o< o4 H (1-op) = 1—za H (1=2p) 2. The estimatiorll” = . ,7a = O(nlog1/d) is
Bedrid pedr tight and can be achieved, e.g., by having an isolated
If 24 < 1/2, then§ < [lpc4,.(1 — ) < event with constant probability for each variable. In
e~ Xpeap B and we gety peq, v < In(1/6) < many cases withog 1/6 = w(logn) it is nevertheless
log(1/6) as required. Otherwise, ik, > 1/2, let an overestimate, and in most cases the running time is
By € Ap \ A. Then, O(nlogn) even fore = 0.

S<xa- H (1—zp) V\_/hile_Theorem I11.1 gives very gpod bo_unds on the run-
ning time of MT even for applications witf}(n) < m <

pedna poly(n) many events, it unfortunately often fails to be
= za(l-zp) H (1-zp) directly applicable whenn becomes super-polynomial
BEAp\(AUB1) in n. The reason is that maintaining bad events implicitly
< za(l- xBl)eszeAP\MuBﬂ B (5) and running the resampling process requires an efficient



way to find violated events. In many examples like thoseutputs a good assignment with probability at least

discussed in Section | (except acyclic edge-coloring)— Z TA.

with super-polynomially many events, finding violated — ac.\ 4’

events or even just verifying a good assignment is not

known to be in polynomial time (often even provablyWVhile the concept of an efficiently verifiable core is easy

NP-hard). To capture the sets of events for which we c&® understand, it is not clear how often and how such
run the MT algorithm efficiently we use the followinga core can be found. Furthermore having such a core
definition: is only useful if the probability of the non-core events

is small enough to make the failure probability, which

is based on the union bound over those probabilities,
meaningful. The following main theorem shows that in

all applications that can tolerate a small “exponential”

e-slack as introduced by [12] , finding such a good core
is straightforward:

Definition 111.2. (Efficient verifiability) A set A of
events that are determined by variable§ins efficiently
verifiableif, given an arbitrary assignment t8, we can
efficiently find an eventl € A that holds or detect that
there is no such event.

Because many larged of interest are not efficiently Theorem Ill.4. Supposdog1/§ < poly(n). Suppose
verifiable a direct application of the MT-algorithm is nofurther that there is a fixed constaate (0,1) and an
efficient. Nevertheless we show in the rest of this secti@ssignment of reals : A — (0,1 — ¢) such that:

that using thg randomness_in the output distributiqn_of VAc A - Pr{A}lfe < 2(A) H (1— z(B)).

the MT-algorithm characterized by Theorem 11.2, it is

still practically always possible to obtain efficient Monte .

Carlo algorithms that produce a good assignment witen for every > = the set{ A; € A: Pr{A;} >
high probability. p} has size at mosboly(n), and is thus essentially

o . R o always an efficiently verifiable core subset.4f If this
The main idea is to judiciously select an efficientlys e case, then there is a Monte Carlo algorithm that
verifiable core subsetd’ C A of bad events and apply ierminates afte0(% log %) resamplings and returns a

the MT—aIgorithm to it. Essentially instead of looking forgood assignment with probability at least n—¢, where
violated events ind we only resample events frold’ . < s any desired constant.

and terminate when we can not find one such violated
event. The non-core events will have small probabilities  proof: For a probabilityp = 1/poly(n) to be

and will be sparsely connected to core events and as s¥gRq |ater we defined’ as the set of events with
their probabilities in the LLL-distribution and thereforeprobabi”ty at leasty. Recall from Theorem III.1 that
also the output distribution of the algorithm does noEA 174 < O(nlog(1/5)). Sincex, > p for A € A’

. (= = . - 1
blow up by much. There is thus hope that the norge get that|4’| < O(nlog(1/6)/p) = poly(n). By

core events remain unlikely to happen even though th‘a}ésumptionA’ is efficiently verifiable and we can run
were not explicitly fixed by the algorithm. Theorem l11.3the modified resampling algorithm with it.

the proof of which can be found in the full version

[17] shows that if the LLL-conditions are fulfilled for For every event we haver {A} < z4 <1—e and thus

A then a non-core eventt ¢ A’ is violated in the 9etan(l —e)® = (1 —O(e*))-slack; therefore Theorem
produced output with probability at mast,. This makes 11l.1 applies and guarantees that the algorithm terminates
the success probability of such an approach at led¥ith high probability afterO(Z log %) resamplings.

1- Z TA- To prove the failure probability note that for every non-
AeA core eventA € A\ A’ the LLL-conditions with the
Theorem II.3. Let A’ C A be an efficiently verifiable “exponentiak-slack” provide an extra multiplicative™*
core subset ofd. If there is ane € [0,1) and an factor over the LLL-conditions in Theorem IIl.1. While
assignment of reals : . A — (0,1) such that: Yoacaa T(A) < Y acaza = T = poly(n) holds
in this setting we can make this union bound at most
VAe A:Pr{A} <(1—-¢€)z(A) H (1 —=x(B)). n— by choosingp = n~°(/9) small enough. Now as
BET(A)NA/ in Lemma 111.3 we get that we fail with probability at
Then the modified MT-algorithm can be efficiently imr_nostn c on non-core events while safely avoiding the
. . core. This completes the proof of the theorem. &
plemented with an expected number of resamplings ac-

cording to Theorem Ill.1. The algorithm furthermoreThe last theorem nicely completes this section; it shows

BET(A)



that in practically all applications of the general LLL itany player, that is, to maximizain; Zjesi p(i,7). (The

is possible to obtain a fast Monte Carlo algorithm wittiminmax” version of this “maxmin” problem is the
arbitrarily high success probability. The conditions oflassical problem of makespan minimization in unrelated
Theorem IIl.4 are very easy to check and are usualparallel machine scheduling [20].) This problem has
directly fulfilled. That is, in all LLL-based proofs (with received much attention recently [5]-[8], [11], [15], [27]
a large number of eventd;) known to us, the set of . . . L

. . L A restricted version of max-min allocation is where
high-probability events forms a polynomial-sized corée

o o - .~ @ach item has an intrinsic value, and where for every
that is trivially efficiently verifiable, e.g., by exhausgiv . L .
enumeration. Theorem Ill.4 makes these proofs constr layer i, p;; is either p; or 0. This is known as
' . Ke santa Claus problem. The Santa Claus problem

tive without further complicated analysis. Only in cases . L .

o : - 1S NP-hard and no efficient approximation algorithm
where the LLL-condition is used are adjustments in thg .
bounds needed. to respect thelack etter than1/2 can be obtained unles® = NP

' P ' [10]. Bansal and Sviridenko [7] considered a linear-

Note that the failure probability can be made an arbprogramming (LP) relaxation of the problem known as
trarily small inverse polynomial. This is important sincghe configuration LP, and showed how to round this LP
for problems with non-efficiently verifiable solutions, theo obtain anO(log loglogm/ loglog m)-approximation
success probability of Monte Carlo algorithms cannot kegorithm for the Santa Claus problem. They also showed
boosted using standard amplification. a reduction to a crisp combinatorial problem, a feasible

In all applications known to us, the core above hassolu'uon to which implies a constant-factor integrality

further nice structure: usually the probability of an evertoP for the configuration LP.
A; is exponentially small in the number of variables iSubsequently, Feige [15] showed that the configuration
depends on. Thus, each event in the core only deperid® has a constant integrality gap. Normally such a
on O(logn) many A;, and hence is usually trivial to proof immediately gives a constant-factor approximation
enumerate. This makes the core efficiently verifiablaJgorithm that rounds an LP solution along the line
even when finding a general violated eventdris hard. of the integrality-gap proof. In this case Feige’s proof
The fact that the core consists of polynomially mangould not be made constructive because it was heavily
events with usually logarithmically many variables eacliased on repeated reductions that apply the asymmetric
makes it often even possible to enumerate the corevarsion of the LLL to exponentially many events. Due
parallel and to evaluate each event in parallel. If this i® this unsatisfactory situation, the Santa Claus problem
the case, one can get an RNC algorithm by first buildingas the first on a list of problems reported in the
the dependency graph on the core and then computisigrvey “Estimation Algorithms versus Approximation
a maximal independent set (MIS) of violated events iAlgorithms” [16] for which a constructive proof would
each round, using MIS algorithms such as [2], [21be desirable. Using a completely different approach,
Using the proof of Theorem Ill.1, it is easy to see thaAsadpour, Feige and Saberi [5] could show that the
only logarithmically many rounds of resampling theseonfiguration LP has an integrality gap of at m%st
events are needed. Their proof uses local-search and hypergraph matching
We also note that although the derandomization (]tzll%;eﬁlrems of H?xeltl_ [18].dth;\lerItsttrljelorenl15 are hagawg
[12] also only requires an exponentialslack in the ghly honconstructive and the stated focal-search prob-
LLL-conditions, applying the techniques of [12] seemlsem 'S npt kr_10wn to be efficiently _solyable and in fapt the
difficult whenm is superpolynomial. conclusion in [5]_suggests that finding a Iocal_opumum
could be potentially PLS-complete. Thus this second
nonconstructive proof still left the question of a constant
IV. A CONSTANT-FACTOR APPROXIMATION factor approximation algorithm open.

ALGORITHM FOR THESANTA CLAUS PROBLEM We now sketch how Theorem Ill.4 can be used to

In the max-min allocation problem, there is a gebf easily and directly constructivize the LLL-based proof of
n items, andm players. The value (utility) of iteny Feige_ [15], giving the first constant-factor approximation
to playeri is p;; > 0. An item can be assigned toa!gonthm for the Santa Claus probl_em. A Compl_ete
only one player. If a playef receives a subset of thediscussion of the proof can be found in the full version
items S; C C, then the total valuation of the items[17]-

received byi is 3 ;¢ p(i,j). The goal is to maximize

the minimum total valuation of the items received by



A. Reduction tdk, [, 3) systems and Feige’s proof Starting from the original system, as long as> c,
Lemma Reduce-l is applied and whén> [, Lemma

Reduce-k is applied. In this proce8sggrows at most by

As explained above, Bansal and Sviridenko [7] ShoW ¢aetor of2. Thus at the end, and are constants and

how to reduce the question of finding a good solution tg, is 3. Then applying Lemma IV.2 finishes the proof.
the Santa Claus problem to solving the following kind

of combinatorial matching calletk, l, 3) system: . )
_ B. Randomized Algorithm fdik, [, 5) systems
A (k, 1, B) system consists @fgroups ofl players. Each

player values a set of items and each item is valuedThe two main steps required for obtaining an algorithm
by at mosts! players (we will always havé < 5 < 3). that produces a-good solution for everyk, [, 5) system

A (k,1,5) system isy-good if there is a choice of oneare: (i) showing a constructive procedure to obtain the
player per group and k| items valued by each suchreduced system through Lemmas Reduce-I and Reduce-
player such that all chosen items are disjoint. k, and (ii) mapping the solution of the final reduced

The following theorem establishes the connection to thsé{Stem back to the prlglnal system. We now discuss these
in some more detail.

Santa Claus problem:

. _ The proof for Lemma Reduce-l only applies the sym-

;Lg?c:%?gvlg;l(li [17 ]%) g tsr;:E \?v?ils;s_ayg(—l)@;n_sggg metric version of the LLL and can easily be made
M Y N 9 constructive using the MT-algorithm [25]. As Feige

solution can be found than this can be turned into a . ; s
: L oints out, Lemma Reduce-k is more problematic: “the
solution for the Santa Claus problem that is within . o . . :
) main source of difficulty in this respect is Lemma 2.4,
constant-factor of the optimum. ; S
because there the number of bad events is exponential in
the problem size, and moreover, there are bad events that

Feige shows that finding a good matching of items . . N
. , involve a constant fraction of the random variables.” In
to one player from each group is always possible

b . .
systematically reducing either the numblerof items tY1e following we recapitulate the proof for the Reduce-

k lemma and show how Theorem Ill.4 can be directly
valued by each player or the numbieof players per : . .
. applied to circumvent these problems and make it con-
group until both are small enough constants. For th|s{) i
) I structive.
much simpler situation when there are only a constan
number of players in each group and each player only Making Lemma Reduce-k ConstructivEhe random
values a constant number of items the following lemmaxperiment used to prove Lemma Reduce-k selects each
asserts a constant goodness. item independently at random with probabilié/. To
Lemma V2 (Lemma 2.1 and 2.2 of [15])Every characterize the bad events in the application of the
. e T LLL, we need a structural lemma from [15]. Construct a
(k,1, 3) system ay-good solution fory satisfying,y = ¢ h he pl h h . dae b
or 7k = | 5| can be found efficiently graph on the players, where there is an edge between
v (L] ' two players if they have an item they both value. A
collection of players is said to be connected if and only

The reduction of a(k, !, 5) system to an equivalentif the subgraph induced by this collection is connected.

system with constarit and!/ involves two main lemmas,
which we refer to asReduce-llemma andReduce-k We consider two types of bad events:

lemma respectively.
P Y 1) Bi: some player has less thah= (1 — M) k

Lemma IV.3 (Lemma 2.3 of [15], Reduce:l)For [ > ¢ items surviving; and Vk ) 2

(c a sufficiently large constant), every, [, 5) system 2y p, for ; > 2: there is a connected collection of
with k < I can be transformed into &, V', 5) system players from distinct groups whose union of items
with I’ < log” ¢ and ' < B(1 + @)' valued originally contained at mostk items, of
Lemma IV.4 (Lemma 2.4 of [15], Reduce-k)Every which more thanis’% items survive, wheré’ =
(k,l,8) system withk > [ > ¢ can be transformed ol (1+ %)

into a (k',1,3) system withk’ < % and with the
following additional property: if the original system is!f none of the above bad events happen, then we can con-

not v-good, then the new system is ngtgood for Sider the firstt” items from each set and yet the second
v = (1 + 3;)51@) Conversely, if the new system idype of bad events do not happen. These events are cho-
vk /T !

~/-good, then the original system wasgood. sen such that’-goodness’ = 0’5+ < v (1 + 1337;_:))




of the new system certifies that the original system waandomized algorithm for the Santa Claus problem that
~ good. That this is indeed the case follows directly fromuns in expected polynomial time and assigns items of
Hall's theorem: total valuation at leastv - OPT to each player.

Lemma IV.5 (Lemma 2.7 of [15]) Consider a collection

of n sets and a positive integer V. BEYOND THE LLL T HRESHOLD

1) If for somel < i < n, there is a connected __ . . L .
subcollection ofi sets whose union contains Iess'I'h|s section sketches another application of using the
than iq items, then there is no choice gfitems properties of the conditional LLL-distribution introdute

per set such that all items are distinct. in Section Il in a slightly different way. While all resglts
2) If for everyi, 1 < i < n, the union of every presepte_d so far rely on a union pounq over events in the
connected subcollection éfsets contains at least LLL-distribution we use here th_e linearity of_expectauon
1q (distinct) items, then there is a choiceitems f‘?f fgrth_er propablhstlc analysis of events in the LLL.'
per set such that all items are distinct. dlstrlbut|0_n. _Thls already leads to new no_n-construcnve
results. Similar to the other proofs involving the LLL-
distribution in this paper this upper bound can be made
constructive using Theorem 11.2. Considering that the

condition (1) of the asymmetric LLL. More precisely,L.LL'diStLibUtiOrr:. ahpproximately preserves othher annti-_
suppose we define, for any bad evedte |J.-, B, ties such as higher moments, we expect that there is
I'(B) to be as in Section I-C: i.e[;( B) is the set of all much more room to use more sophisticated probabilistic

bad eventsd B such thatd and B both depend on tools Iike_concentration b(.)unds. to give both new non-
at least one common random variable in our “random?nswcwe gnd co_n_structlve existence proofs of discret
and independently selecting items” experiment. Then, fructures with additional strong properties.
is shown in [15] that with the choice; = 27'%1°¢%  The setting we want to concentrate on here is when a
for all events inB;, we have for alli > 1 and for all set of bad events is given from which not necessarily
B € B;, all but as many as possible events are to be avoided.
—20ilog The exemplifying application is the well known MAX-
Pr{B} <2728k < H H (L=25) () ) _saT problem which in contrast td-SAT asks not
j21 Ae(B;N0(B)) for a satisfying assignment of &CNF formula but for
Thus by the LLL, there exists an assignment that avoidé assignment that violates as few clauses as possible.
all the bad events. However, no efficient construction wasiven a k-CNF formula with m clauses a random
known here, and as Feige points out, “the main souressignment to its variables violates each clause with
of difficulty in this respect is Lemma 2.4, because thengrobability2—* and thus using linearity of expectation it
the number of bad events is exponential in the probleis easy to find an assignment that violates at mot”
size, and moreover, there are bad events that involveclauses. If on the other hand each clause shares variables
constant fraction of the random variables.” Our Theoremith at most2* /e — 1 other clauses then the LLL can be
[11.4 again directly makes this proof constructive andised to prove the existence of a satisfying assignment
gives an efficient Monte Carlo algorithm for producingwhich violates0O clauses) and the MT algorithm can
a reduce-k system with high probability: be used to find such an assignment efficiently. But what
can be achieved when the number of clauses sharing a
vfalriables is more tha2l* /e—1? Lemma V.1 (proof in the
full version [17]) shows that a better assignment can be
constructed if it is possible to find a sparsely connected

2) Mapping the solution of the final reduced syster%Ub_formUIa1 that satisfies the LLL-condition.

back: Please see [17] for the proof of this mapping,.emma V.1. Supposef’ is a k-CNF formula in which
and of Lemma IV.6. there exists a set of core clauséswith the property
We can easily check if the algorithm finally produces Ealhat 0 everi/ clause inC Shafes var|able§ with at
) ) . mostd < 2%/e — 1 clauses inC, and (ii) every
good solution, thus leading to a Las Vegas algorithm for, L= ) . %
) clause inC shares variables with at most(2*/e — 1)

our problem: .
many clauses inC, for some~y > 0. Let n and m

Theorem IV.7. There exists a constant > 0 and a denote the total number of variables and claused’in

Feige showed in [15] that for bad events of tyBg i >
1, taking z; = 27101k js sufficient to satisfy the

Lemma IV.6. There is a Monte Carlo algorithm that
produces a valid reduce-k system with probability at lea
1—1/m2.



respectively. Then, for an§ > 1/poly(n,m), there is

(8]

a randomizedoly(n, m)-time algorithm that produces,
with high probability, an assignment in which all clauses

in C are satisfied and at most an + 0)2~*e7 fraction
of clauses fronC' are violated. (If we are content with
success-probability — n~¢ for some constant, then

El
[10]

there is also a randomized algorithm that runs in timgi1]
poly(n, |C|), satisfies all clauses i@, and violates at
most an(1/p) - 2~ *¢" fraction of clauses fronC. This (15,
can be useful ifC| <« m.)

As mentioned in Section I-B, we are also able to provgs
the following. Suppose we have, as usual, a system of

independent random variablé® = {P;, P, ..
and bad eventsd = {A4;, A, ..

- P}
- A}, with depen- 14

dency graphG = G 4. Let us consider the symmetric
case in whichPr[4;] < p = o(1) for eachi. Suppose

the maximum degree ofs is at mosta(1/(ep) — 1), [15
for 1 < a < e. We prove that one can construct, in

randomized time polynomial in andm, an assignment
to the P; such that the number of; that hold is at most

[16]

(I+0(1)) - (e(Ina)/cx) - mp.
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