
1

New Constructive Aspects of the Lovász Local
Lemma

Bernhard Haeupler Barna Saha Aravind Srinivasan

Abstract—The Lovász Local Lemma (LLL) is a powerful
tool that gives sufficient conditions for avoiding all of a
given set of “bad” events, with positive probability. A series
of results have provided algorithms to efficiently construct
structures whose existence is non-constructively guaranteed
by the LLL, culminating in the recent breakthrough of
Moser & Tardos. We show that the output distribution
of the Moser-Tardos algorithm well-approximates thecon-
ditional LLL-distribution – the distribution obtained by
conditioning on all bad events being avoided. We show
how a known bound on the probabilities of events in this
distribution can be used for further probabilistic analysis
and give new constructive and non-constructive results.

We also show that when an LLL application provides a
small amount of slack, the number of resamplings of the
Moser-Tardos algorithm is nearly linear in the number of
underlying independent variables (not events!), and can
thus be used to give efficient constructions in cases where
the underlying proof applies the LLL to super-polynomially
many events. Even in cases where finding a bad event that
holds is computationally hard, we show that applying the
algorithm to avoid a polynomial-sized “core” subset of bad
events leads to a desired outcome with high probability.

We demonstrate this idea on several applications. We give
the first constant-factor approximation algorithm for the
Santa Claus problem by making an LLL-based proof of
Feige constructive. We provide Monte Carlo algorithms
for acyclic edge coloring, non-repetitive graph colorings,
and Ramsey-type graphs. In all these applications the
algorithm falls directly out of the non-constructive LLL-
based proof. Our algorithms are very simple, often provide
better bounds than previous algorithms, and are in several
cases the first efficient algorithms known.

As a second type of application we consider settings beyond
the critical dependency threshold of the LLL: avoiding
all bad events is impossible in these cases. As the first
(even non-constructive) result of this kind, we show that by
sampling from the LLL-distribution of a selected smaller

haeupler@mit.edu; CSAIL, Dept. of Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139. Part of this
work was done while visiting the University of Maryland.

barna@cs.umd.edu; Dept. of Computer Science, University of Mary-
land, College Park, MD 20742, Supported in part by NSF Award CCF-
0728839, ,NSF Award CCF-0937865

srin@cs.umd.edu; Dept. of Computer Science and Institute for
Advanced Computer Studies, University of Maryland, College Park,
MD 20742. Supported in part by NSF ITR Award CNS-0426683 and
NSF Award CNS-0626636.

core, we can avoid a fraction of bad events that is higher
than the expectation. MAX k-SAT is an example of this.

I. I NTRODUCTION

The well-known Lovász Local Lemma (LLL) [14] is a
powerful probabilistic approach to prove the existence
of certain combinatorial structures. Its diverse range
of applications include breakthroughs in packet-routing
[19], a variety of theorems in graph-coloring including
list coloring, frugal coloring, total coloring, and coloring
graphs with lower-bounded girth [23], as well as a
host of other applications where probability appears at
first sight to have no role [4]. Furthermore, almost all
known applications of the LLL have no alternative proofs
known. While the original LLL was non-constructive –
it was unclear how the existence proofs could be turned
into polynomial-time algorithms – a series of works [1],
[9], [13], [22]–[26], [28] beginning with Beck [9] and
culminating with the breakthrough of Moser & Tardos
(MT) [25] have led to efficient algorithmic versions
for most such proofs. However, there are several LLL
applications to which these approaches inherently cannot
apply; our work makes progress toward bridging this
gap, by uncovering and exploiting new properties of
[25]. We also obtain what are, to our knowledge, the
first algorithmic applications of the LLL where a few
of the bad events have to happen, and where we aim to
keep the number of these small.

Essentially all known applications of the LLL use the
following framework. LetP be a collection ofn mu-
tually independent random variables{P1, P2, . . . , Pn},
and let A = {A1, A2, . . . , Am} be a collection of
m (“bad”) events, each determined by some subset of
P . The LLL (Theorem I.1) shows sufficient conditions
under which, with positive probability, none of the events
Ai holds: i.e., that there is a choice of values for the
variables inP (corresponding to a discrete structure
such a suitable coloring of a given graph) that avoids
all the Ai. Under these same sufficient conditions, MT
shows the following very simple algorithm to make such

a choice: (i) initially choose thePi independently from
their given distributions; (ii)while the current assignment
to P does not avoid all theAi, repeat: arbitrarily choose
a currently-trueAi, and resample, from their product
distribution, the variables inP on which Ai depends.
The amazing aspect of MT is that the expected number
of resamplings is small [25]: at mostpoly(n,m) in
all known cases of interest. However, there are two
problems with implementing MT, that come up in some
applications of the LLL:

(a) the number of eventsm can be superpolynomial
in the number of variablesn; this can result in a
superpolynomial running time in the “natural” parameter
n 1; and, even more seriously,

(b) given an assignment toP , it can be computationally
hard (e.g., NP-hard or yet-unknown to be in polynomial
time) to either certify that noAi holds, or to output an
index i such thatAi holds.

Since detection and resampling of a currently-bad event
is the seemingly unavoidable basic step in the MT
algorithm, these applications seemed far out of reach.
We deal with a variety of applications wherein (a) and/or
(b) hold, and develop Monte Carlo (and in many cases,
RNC) algorithms whose running time is polynomial
in n: some of these applications involve a small loss
in the quality of the solution. (We loosely let “RNC
algorithms” denote randomized parallel algorithms that
usepoly(n) processors and run inpolylog(n) time, to
output a correct solution with high probability.) First
we show that the MT algorithm needs onlyO(n2 logn)
many resampling steps in all applications that are known
(and in most casesO(n · polylog(n))), even whenm
is superpolynomial inn. This makes those applications
constructive that allow anefficientimplicit representation
of the bad events (in very rough analogy with the usage
of the ellipsoid algorithm for convex programs with
exponentially many constraints but with good separation
oracles). Still, most of our applications have problem (b).
For these cases, we introduce a new proof-concept based
on the (conditional) LLL-distribution– the distribution
D on P that one obtains when conditioning on noAi

happening. Some very useful properties are known for
D [4]: informally, if B depends “not too heavily” on
the events inA, then the probability placed onB by D
is “not much more than” the unconditional probability
Pr {B}: at mostfA(B) ·Pr {B} (see (3)). Such bounds
in combination with further probabilistic analysis can be

1n is the parameter of interest since the output we seek is one value
for each ofP1, P2, . . . , Pn.

used to give interesting (nonconstructive) results. Our
next main contribution is that the MT algorithm has
an output distribution (sayD′) that “approximates” the
LLL-distribution D: in that for everyB, thesameupper
boundfA(B) · Pr {B} as above, holds inD′ as well.
This can be used to make probabilistic proofs that use
the LLL-condition constructive.

Problem (b), in all cases known to us, comes from
problem (a): it is easy to test if anygiven Ai holds
currently (e.g., if a given subset of vertices in a graph
is a clique), with the superpolynomiality ofm being the
apparent bottleneck. To circumvent this, we develop our
third main contribution: the general Theorem III.4 that is
simple and directly applicable in all LLL instances that
allow a small slack in the LLL’s sufficient conditions.
This theorem proves that a smallpoly(n)-sized core-
subset of the events inA can be selected and avoided
efficiently using the MT algorithm. Using the LLL-
distribution and a simple union bound over the non-
core events, we get efficient (Monte Carlo and/orRNC)
algorithms for these problems.

We develop two types of applications, as sketched next.
Due to page limitations, we omit several details here;
please see the extended version of this paper for these
details and all omitted proofs [17].

A. Applications that avoid all bad events

A list of four applications follows; all of these have
problem (a), and all but the acyclic-coloring application
have problem (b). Most such results haveRNC versions
as well.

The Santa Claus Problem:The Santa Claus problem
is the restricted assignment version of the max-min
allocation problem of indivisible goods. The Santa Claus
hass gifts that need to be distributed amongt children.
Each child has a utility for each gift, which is either
0 or some givenpj for gift j. The objective is to
assign each gift to some child, so that the minimum
total utility received by any child is maximized. This
problem has received much attention recently [5]–[8],
[11], [15]. The problem is NP-Hard and the best-known
approximation algorithm due to Bansal and Sviridenko
[7] achieves an approximation factor ofO(log log s

log log log s)
by rounding a certain configuration LP. Later, Feige in
[15] and Asadpour, Feige and Saberi in [5] showed
that the integrality gap of the configuration LP is a
constant. These results were obtained using two different
nonconstructiveapproaches, and left the question of
a constant-factor approximation algorithm open. This

2

made the Santa Claus problem one of the rare instances
[16] in which the proof of an integrality gap did not
result in a approximation algorithm with the same ratio.
We resolve this by making the nonconstructive LLL-
based proof of Feige [15] constructive (Section IV) and
giving the first constant-factor approximation algorithm
for the Santa Claus problem.

Please see the full version [17] for details about
the other three applications:Non-repetitive Coloring
of Graphs, General Ramsey-Type Graphs, and Acyclic
Edge-Coloring.

B. Applications that avoid many bad events

Many settings require “almost all” bad events to be
avoided, and not necessarily all; e.g., consider MAX-
SAT as opposed to SAT. However, in the LLL context,
essentially the only known general applications were “all
or nothing”: either the LLL’s sufficient conditions hold,
and we are able to avoid all bad events, or the LLL’s
sufficient conditions are violated, and the only known
bound on the number of bad events is the trivial one
given by the linearity of expectation (which does not
exploit any “almost-independence” of the bad events, as
does the LLL). This situation is even more pronounced
in the algorithmic setting. We take what are, to our
knowledge, the first steps in this direction, interpolating
between these two extremes.

While our discussion here holds for all applications
of the symmetric LLL, let us take MAX-k-SAT as an
illustrative example. (The LLL is defined in Section I-C,
but let us recall its well-known “symmetric” special case:
in the setting of MT withP andA as defined near the
beginning of Section I, ifPr {Ai} ≤ p andAi depends
on at mostd otherAj for all i, thene · p · (d + 1) ≤ 1
suffices to avoid all theAi.) Recall that in MAX-k-SAT,
we have a CNF formula onn variables, withm clauses
each containing exactlyk literals; as opposed to SAT,
where we have to satisfy all clauses, we aim to maximize
the number of satisfied clauses here. The best general
upper-bounds on the number of “violated events” (un-
satisfied clauses) follow from the probabilistic method,
where each variable is set to True or False uniformly
at random and independently. On the one hand, the
linearity of expectation yields that the expected number
of unsatisfied clauses ism ·2−k (with a derandomization
using the method of conditional probabilities). On the
other hand, if each clause shares a variable with at
most2k/e− 1 other clauses, a simple application of the
symmetric LLL shows that all clauses can be satisfied

(and made constructive using MT). No interpolation
between these was known before; among other results,
we show that if each clause shares a variable with at
most∼ α2k/e other clauses for1 < α < e, then we can
efficiently construct an assignment to the variables that
violates at most(e ln(α)/α+ o(1)) ·m · 2−k clauses for
largek. (This is better than the linearity of expectation iff
α < e: it is easy to construct examples withα = e where
one cannot do better than the linearity of expectation. See
[3] for the fixed-parameter tractability of MAX-k-SAT
above(1− 2−k)m satisfied clauses.)

The above and related results for applications of the sym-
metric LLL, follow from the connection to the “further
probabilistic analysis using the remaining randomness of
LLL-distributions” that we alluded to above.

C. Preliminaries & Algorithmic Framework

We follow the general algorithmic framework of the
Local Lemma due to MT. As in our description at the
beginning of Section I, letP be a finite collection of mu-
tually independent random variables{P1, P2, . . . , Pn}
and letA = {A1, A2, . . . , Am} be a collection of events,
each determined by some subset ofP . For any event
B that is determined by a subset ofP we denote the
smallest such subset byvbl(B). For any eventB that is
determined by the variables inP , we furthermore write
Γ(B) = ΓA(B) for the set of all eventsA 6= B in A
with vbl(A) ∩ vbl(B) 6= ∅.2 This neighborhood relation
induces the following standarddependency graphor
variable-sharing graphon A: For the vertex setA let
G = GA be the undirected graph with an edge between
eventsA,B ∈ A iff A ∈ Γ(B). We often refer to events
in A as bad eventsand want to find a point in the
probability space, or equivalently an assignment to the
variablesP , wherein none of the bad events happen. We
call such an assignment agood assignment.

With these definitions the general (“asymmetric”) ver-
sion of the LLL simply states:

Theorem I.1 (Asymmetric Lovász Local Lemma). With
A,P andΓ defined as above, if there exists an assign-
ment of realsx : A → (0, 1) such that

∀A ∈ A : Pr {A} ≤ x(A)
∏

B∈Γ(A)

(1− x(B)); (1)

then the probability of avoiding all bad events is at least
ΠA∈A(1 − x(A)) > 0 and thus there exists a good
assignment to the variables inP .

2It is important to note thatB itself may not be an element ofA.

3

We study several LLL instances where the number of
events to be avoided,m, is super-polynomial inn; our
goal is to develop algorithms whose running time is
polynomial in n which is also the size of the output -
namely a good assignment of values to then variables.
We introduce a key parameter:

δ := min
A∈A

x(A)
∏

B∈Γ(A)

(1 − x(B)). (2)

Note that without loss of generalityδ ≤ 1
4 because

otherwise allA ∈ A are independent, i.e., defined on
disjoint sets of variables. Indeed ifδ > 1

4 and there is
an edge inG betweenA ∈ A andB ∈ A than we have
1
4 > x(A)(1 − x(B)) and 1

4 > x(B)(1 − x(A)), i.e.,
1
4 · 1

4 > x(A)(1 − x(A)) · x(B)(1 − x(B)) which is a
contradiction becausex(1 − x) ≤ 1

4 for all x.

We allow our algorithms to have a running-time that
is polynomial in log(1/δ); in all applications known
to us, δ ≥ exp(−O(n logn)), and hence,log(1/δ) =
O(n log n). In fact becauseδ is an upper bound for
minA∈A P (A) in any typical encodings of the domains
and the probabilities of the variables,log(1/δ) will be
at most linear in the size of the input or the output.

II. LLL-D ISTRIBUTION

When trying to make the non-constructive Lovász Local
Lemma constructive, the following straightforward ap-
proach comes to mind: draw a random sample for the
variables inP until one is found that avoids all bad
events. If the LLL-conditions are met, this rejection-
sampling algorithm certainly always terminates but be-
cause the probability of obtaining a good assignment
is typically exponentially small, it takes an expected
exponential number of resamplings and is therefore
inefficient. While the celebrated results of [24], [25]
are much more efficient, the above rejection-sampling
method has a major advantage: it does not just produce
an arbitrary assignment but provides a randomly chosen
assignment from the distribution obtained when one con-
ditions on no bad event happening. In the following, we
call this distribution theLLL-distribution or conditional
LLL-distribution.

The LLL-conditions and further probabilistic analysis
can be a powerful tool to obtain new results (constructive
or otherwise) like the constructive one in Section V.
The following is a well-known bound on the probability
PrD {B} that the LLL-distributionD places onany
eventB that is determined by variables inP (its proof
is an easy extension of the standard LLL-proof [4]):

Theorem II.1. If the LLL-conditions from Theorem I.1
are met, then the LLL-distributionD is well-defined. For
any eventB that is determined byP , the probability
PrD{B} of B underD equals:

Pr

{

B
∣

∣

∧

A∈A
A

}

≤ Pr {B}
∏

C∈Γ(B)

(1− xC)
−1 (3)

here, Pr {B} is the probability ofB holding under a
random choice ofP1, P2, . . . , Pn.

The fact that the probability of an eventB does not
change much in the conditional LLL-distribution when
B does not depend on “too many”C ∈ A is used a lot
in the rest of the paper.

More importantly, the following theorem states that the
output distributionD′ of the MT-algorithm approximates
the LLL-distributionD and has the very nice property
that it essentially also satisfies (3):

Theorem II.2. Suppose there is an assignment of reals
x : A → (0, 1) such that (1) holds. LetB be any
event that is determined byP . Then, the probability
that B was true at least onceduring the execution
of the MT algorithm on the events inA, is at most
Pr {B} · (

∏

C∈Γ(B)(1−xC))
−1. In particular, the prob-

ability of B in the output distribution of MT obeys this
upper-bound.

Using this theorem we can view the MT algorithm
as an efficient way to obtain a sample that comes
approximately from the conditional LLL-distribution.
This efficient sampling procedure makes it possible to
make proofs using the conditional LLL-distribution con-
structive and directly convert them into algorithms. All
constructive results of this paper are based on Theorem
II.2 and demonstrate this idea.

III. LLL A PPLICATIONS WITH

SUPER-POLYNOMIALLY MANY BAD EVENTS

In several applications of the LLL, the number of bad
events is super-polynomially larger than the underlying
variables. In these cases we aim for an algorithm that
still runs in time polynomial in the number of variables,
and it is not efficient to have an explicit representation
of all bad events. Surprisingly, Theorem III.1 shows that
the number of resamplings done by the MT algorithm
remains quadratic and in most cases even near linear in
the number of variablesn.

4

Theorem III.1. Suppose there is anǫ ∈ [0, 1) and an
assignment of realsx : A → (0, 1) such that:

∀A ∈ A : Pr {A} ≤ (1− ǫ)x(A)
∏

B∈Γ(A)

(1− x(B)).

With δ denotingminA∈A xA, we have

T :=
∑

A∈A
xA ≤ n log(1/δ). (4)

Furthermore:

1) if ǫ = 0, then the expected number of resam-
plings done by the MT algorithm is at most
v1 = T maxA∈A

1
1−x(A) , and for any parameter

λ ≥ 1, the MT algorithm terminates withinλv1
resamplings with probability at least1− 1/λ.

2) if ǫ > 0, then the expected number of resamplings
done by the MT algorithm is at mostv2 =
O(nǫ log

T
ǫ), and for any parameterλ ≥ 1, the

MT algorithm terminates withinλv2 resamplings
with probability 1− exp(−λ).

Proof: The main idea of relating the quantityT
to n and δ is to use: (i) the fact that the variable-
sharing graphG is dense, and (ii) the nature of the LLL-
conditions which force highly connected events to have
small probabilities andx-values. To see thatG is dense,
consider for any variableP ∈ P the set of events

AP = {A ∈ A|P ∈ vbl(A)},

and note that these events form a clique inG.

Let us first prove the bound onT . To do so, we fix
any P ∈ P and show that

∑

B∈AP
xB ≤ log(1/δ),

which will clearly suffice. Recall from the discussion
following (2) that we can assume w.l.o.g. thatδ ≤ 1

4 . If
|AP | = 1, then of course

∑

B∈AP
xB ≤ 1 ≤ log(1/δ).

If |AP | > 1, let A ∈ AP have the smallestxA value.
Note that by definition

δ ≤ xA

∏

B∈AP \A
(1− xB) =

xA

1− xA

∏

B∈AP

(1− xB).

If xA ≤ 1/2, then δ ≤
∏

B∈AP
(1 − xB) ≤

e
−∑

B∈AP
xB , and we get

∑

B∈AP
xB ≤ ln (1/δ) <

log(1/δ) as required. Otherwise, ifxA > 1/2, let
B1 ∈ AP \A. Then,

δ ≤ xA ·
∏

B∈AP \A
(1− xB)

= xA(1 − xB1)
∏

B∈AP \(A∪B1)

(1− xB)

≤ xA(1 − xB1)e
−∑

B∈AP \(A∪B1) xB . (5)

Now it can be argued (see the full version [17] for
details) that for1/2 ≤ xA ≤ xB1 ≤ 1,

xA(1− xB1) ≤ e−(xA+xB1). (6)

So we get

xA(1− xB1)e
−∑

B∈AP \(A∪B1) xB) ≤ e
−∑

B∈AP
xB ;

using this with (5), we obtain
∑

B∈AP
xB ≤ ln (1/δ) <

log(1/δ) as desired.

Given the bound onT , part (1) follows directly from
the main theorem of [25] and by a simple application of
Markov’s inequality.

Part (2) now also follows from [25]. In section 5 of [25]
it is shown that saving an1−ǫ factor in the probability of
every resampling step implies that with high probability,
no witness tree of sizeΩ(1ǫ log

∑

A∈A
xA

1−xA
) occurs.

This easily implies that none of then variables can
be resampled more often. It is furthermore shown that
without loss of generality allx-values can be assumed
to be bounded away from1 by at leastO(ǫ). This
simplifies the upper bound on the expected running time
to n ·O(1ǫ log

T
ǫ).

As mentioned following the introduction ofδ in (2),
log(1/δ) ≤ O(n log n) in all applications known to us,
and is often even smaller.

a) Remarks:1. Themax
A∈A

1

1− x(A)
factor in the running

time of part (1) of Theorem III.1 corresponds to the
expected number of times the eventA gets resampled
until one satisfying assignment to its variables is found.
It is obviously unavoidable for an algorithm that has
only black-box resampling and evaluation access to the
events. If one alters the algorithm to pick a random
assignment that satisfiesA (which can for example be
computed using rejection sampling, taking an expected
Θ(1

1−x(A)) trials each time), this factor can be avoided.

2. The estimationT =
∑

A∈A xA = O(n log 1/δ) is
tight and can be achieved, e.g., by having an isolated
event with constant probability for each variable. In
many cases withlog 1/δ = ω(logn) it is nevertheless
an overestimate, and in most cases the running time is
O(n logn) even forǫ = 0.

While Theorem III.1 gives very good bounds on the run-
ning time of MT even for applications withΩ(n) ≤ m ≤
poly(n) many events, it unfortunately often fails to be
directly applicable whenm becomes super-polynomial
in n. The reason is that maintaining bad events implicitly
and running the resampling process requires an efficient

5

way to find violated events. In many examples like those
discussed in Section I (except acyclic edge-coloring)
with super-polynomially many events, finding violated
events or even just verifying a good assignment is not
known to be in polynomial time (often even provably
NP-hard). To capture the sets of events for which we can
run the MT algorithm efficiently we use the following
definition:

Definition III.2. (Efficient verifiability) A set A of
events that are determined by variables inP is efficiently
verifiableif, given an arbitrary assignment toP , we can
efficiently find an eventA ∈ A that holds or detect that
there is no such event.

Because many largeA of interest are not efficiently
verifiable a direct application of the MT-algorithm is not
efficient. Nevertheless we show in the rest of this section
that using the randomness in the output distribution of
the MT-algorithm characterized by Theorem II.2, it is
still practically always possible to obtain efficient Monte
Carlo algorithms that produce a good assignment with
high probability.

The main idea is to judiciously select an efficiently
verifiablecore subsetA′ ⊆ A of bad events and apply
the MT-algorithm to it. Essentially instead of looking for
violated events inA we only resample events fromA′

and terminate when we can not find one such violated
event. The non-core events will have small probabilities
and will be sparsely connected to core events and as such
their probabilities in the LLL-distribution and therefore
also the output distribution of the algorithm does not
blow up by much. There is thus hope that the non-
core events remain unlikely to happen even though they
were not explicitly fixed by the algorithm. Theorem III.3
the proof of which can be found in the full version
[17] shows that if the LLL-conditions are fulfilled for
A then a non-core eventA ∈ A′ is violated in the
produced output with probability at mostxA. This makes
the success probability of such an approach at least
1−

∑

A∈A′

xA.

Theorem III.3. Let A′ ⊆ A be an efficiently verifiable
core subset ofA. If there is an ǫ ∈ [0, 1) and an
assignment of realsx : A → (0, 1) such that:

∀A ∈ A : Pr {A} ≤ (1− ǫ)x(A)
∏

B∈Γ(A)∩A′

(1 − x(B)).

Then the modified MT-algorithm can be efficiently im-
plemented with an expected number of resamplings ac-
cording to Theorem III.1. The algorithm furthermore

outputs a good assignment with probability at least
1−

∑

A∈A\A′

xA.

While the concept of an efficiently verifiable core is easy
to understand, it is not clear how often and how such
a core can be found. Furthermore having such a core
is only useful if the probability of the non-core events
is small enough to make the failure probability, which
is based on the union bound over those probabilities,
meaningful. The following main theorem shows that in
all applications that can tolerate a small “exponential”
ǫ-slack as introduced by [12] , finding such a good core
is straightforward:

Theorem III.4. Supposelog 1/δ ≤ poly(n). Suppose
further that there is a fixed constantǫ ∈ (0, 1) and an
assignment of realsx : A → (0, 1− ǫ) such that:

∀A ∈ A : Pr {A}1−ǫ ≤ x(A)
∏

B∈Γ(A)

(1− x(B)).

Then for everyp ≥ 1
poly(n) the set{Ai ∈ A : Pr {Ai} ≥

p} has size at mostpoly(n), and is thus essentially
always an efficiently verifiable core subset ofA. If this
is the case, then there is a Monte Carlo algorithm that
terminates afterO(n

ǫ2 log
n
ǫ2) resamplings and returns a

good assignment with probability at least1−n−c, where
c > 0 is any desired constant.

Proof: For a probability p = 1/poly(n) to be
fixed later we defineA′ as the set of events with
probability at leastp. Recall from Theorem III.1 that
∑

A∈A xA ≤ O(n log(1/δ)). SincexA ≥ p for A ∈ A′,
we get that|A′| ≤ O(n log(1/δ)/p) = poly(n). By
assumptionA′ is efficiently verifiable and we can run
the modified resampling algorithm with it.

For every event we havePr {A} ≤ xA < 1− ǫ and thus
get an(1− ǫ)ǫ = (1−Θ(ǫ2))-slack; therefore Theorem
III.1 applies and guarantees that the algorithm terminates
with high probability afterO(n

ǫ2 log
n
ǫ2) resamplings.

To prove the failure probability note that for every non-
core eventA ∈ A \ A′ the LLL-conditions with the
“exponentialǫ-slack” provide an extra multiplicativep−ǫ

factor over the LLL-conditions in Theorem III.1. While
∑

A∈A\A′ x(A) ≤
∑

A∈A xA = T = poly(n) holds
in this setting we can make this union bound at most
n−c by choosingp = n−O(1/ǫ) small enough. Now as
in Lemma III.3 we get that we fail with probability at
mostn−c on non-core events while safely avoiding the
core. This completes the proof of the theorem.

The last theorem nicely completes this section; it shows

6

that in practically all applications of the general LLL it
is possible to obtain a fast Monte Carlo algorithm with
arbitrarily high success probability. The conditions of
Theorem III.4 are very easy to check and are usually
directly fulfilled. That is, in all LLL-based proofs (with
a large number of eventsAi) known to us, the set of
high-probability events forms a polynomial-sized core
that is trivially efficiently verifiable, e.g., by exhaustive
enumeration. Theorem III.4 makes these proofs construc-
tive without further complicated analysis. Only in cases
where the LLL-condition is used are adjustments in the
bounds needed, to respect theǫ-slack.

Note that the failure probability can be made an arbi-
trarily small inverse polynomial. This is important since
for problems with non-efficiently verifiable solutions, the
success probability of Monte Carlo algorithms cannot be
boosted using standard amplification.

In all applications known to us, the core above has
further nice structure: usually the probability of an event
Ai is exponentially small in the number of variables it
depends on. Thus, each event in the core only depends
on O(log n) many Ai, and hence is usually trivial to
enumerate. This makes the core efficiently verifiable,
even when finding a general violated event inA is hard.
The fact that the core consists of polynomially many
events with usually logarithmically many variables each,
makes it often even possible to enumerate the core in
parallel and to evaluate each event in parallel. If this is
the case, one can get an RNC algorithm by first building
the dependency graph on the core and then computing
a maximal independent set (MIS) of violated events in
each round, using MIS algorithms such as [2], [21].
Using the proof of Theorem III.1, it is easy to see that
only logarithmically many rounds of resampling these
events are needed.

We also note that although the derandomization of
[12] also only requires an exponentialǫ-slack in the
LLL-conditions, applying the techniques of [12] seems
difficult whenm is superpolynomial.

IV. A C ONSTANT-FACTOR APPROXIMATION

ALGORITHM FOR THESANTA CLAUS PROBLEM

In the max-min allocation problem, there is a setC of
n items, andm players. The value (utility) of itemj
to player i is pi,j ≥ 0. An item can be assigned to
only one player. If a playeri receives a subset of the
items Si ⊆ C, then the total valuation of the items
received byi is

∑

j∈Si
p(i, j). The goal is to maximize

the minimum total valuation of the items received by

any player, that is, to maximizemini
∑

j∈Si
p(i, j). (The

“minmax” version of this “maxmin” problem is the
classical problem of makespan minimization in unrelated
parallel machine scheduling [20].) This problem has
received much attention recently [5]–[8], [11], [15], [27].

A restricted version of max-min allocation is where
each item has an intrinsic value, and where for every
player i, pi,j is either pj or 0. This is known as
the Santa Claus problem. The Santa Claus problem
is NP-hard and no efficient approximation algorithm
better than1/2 can be obtained unlessP = NP
[10]. Bansal and Sviridenko [7] considered a linear-
programming (LP) relaxation of the problem known as
the configuration LP, and showed how to round this LP
to obtain anO(log log logm/ log logm)-approximation
algorithm for the Santa Claus problem. They also showed
a reduction to a crisp combinatorial problem, a feasible
solution to which implies a constant-factor integrality
gap for the configuration LP.

Subsequently, Feige [15] showed that the configuration
LP has a constant integrality gap. Normally such a
proof immediately gives a constant-factor approximation
algorithm that rounds an LP solution along the line
of the integrality-gap proof. In this case Feige’s proof
could not be made constructive because it was heavily
based on repeated reductions that apply the asymmetric
version of the LLL to exponentially many events. Due
to this unsatisfactory situation, the Santa Claus problem
was the first on a list of problems reported in the
survey “Estimation Algorithms versus Approximation
Algorithms” [16] for which a constructive proof would
be desirable. Using a completely different approach,
Asadpour, Feige and Saberi [5] could show that the
configuration LP has an integrality gap of at most1

5 .
Their proof uses local-search and hypergraph matching
theorems of Haxell [18]. Haxell’s theorems are again
highly nonconstructive and the stated local-search prob-
lem is not known to be efficiently solvable and in fact the
conclusion in [5] suggests that finding a local optimum
could be potentially PLS-complete. Thus this second
nonconstructive proof still left the question of a constant-
factor approximation algorithm open.

We now sketch how Theorem III.4 can be used to
easily and directly constructivize the LLL-based proof of
Feige [15], giving the first constant-factor approximation
algorithm for the Santa Claus problem. A complete
discussion of the proof can be found in the full version
[17].

7

A. Reduction to(k, l, β) systems and Feige’s proof

As explained above, Bansal and Sviridenko [7] show
how to reduce the question of finding a good solution to
the Santa Claus problem to solving the following kind
of combinatorial matching called(k, l, β) system:

A (k, l, β) system consists ofp groups ofl players. Each
player values a set ofk items and each item is valued
by at mostβl players (we will always have1 ≤ β ≤ 3).
A (k, l, β) system isγ-good if there is a choice of one
player per group and⌊γk⌋ items valued by each such
player such that all chosen items are disjoint.

The following theorem establishes the connection to the
Santa Claus problem:

Theorem IV.1 ([7]). If there exists aγ = Θ(1) such
that for every(k, l, β) system withβ = Θ(1) a γ-good
solution can be found than this can be turned into a
solution for the Santa Claus problem that is within a
constant-factor of the optimum.

Feige shows that finding a good matching of items
to one player from each group is always possible by
systematically reducing either the numberk of items
valued by each player or the numberl of players per
group until both are small enough constants. For this
much simpler situation when there are only a constant
number of players in each group and each player only
values a constant number of items the following lemma
asserts a constant goodness.

Lemma IV.2 (Lemma 2.1 and 2.2 of [15]). Every
(k, l, β) system aγ-good solution forγ satisfying,γ = 1

k

or γk = ⌊ k
⌈βl⌉⌋ can be found efficiently.

The reduction of a(k, l, β) system to an equivalent
system with constantk andl involves two main lemmas,
which we refer to asReduce-l lemma andReduce-k
lemma respectively.

Lemma IV.3 (Lemma 2.3 of [15], Reduce-l). For l > c
(c a sufficiently large constant), every(k, l, β) system
with k ≤ l can be transformed into a(k, l′, β′) system
with l′ ≤ log5 l and β′ ≤ β(1 + 1

log l).

Lemma IV.4 (Lemma 2.4 of [15], Reduce-k). Every
(k, l, β) system withk ≥ l ≥ c can be transformed
into a (k′, l, β) system withk′ ≤ k

2 and with the
following additional property: if the original system is
not γ-good, then the new system is notγ′-good for
γ′ = γ(1 + 3 log k√

γk
). Conversely, if the new system is

γ′-good, then the original system wasγ-good.

Starting from the original system, as long asl > c,
Lemma Reduce-l is applied and whenk ≥ l, Lemma
Reduce-k is applied. In this processβ grows at most by
a factor of2. Thus at the end,l andk are constants and
so isβ. Then applying Lemma IV.2 finishes the proof.

B. Randomized Algorithm for(k, l, β) systems

The two main steps required for obtaining an algorithm
that produces aγ-good solution for every(k, l, β) system
are: (i) showing a constructive procedure to obtain the
reduced system through Lemmas Reduce-l and Reduce-
k, and (ii) mapping the solution of the final reduced
system back to the original system. We now discuss these
in some more detail.

The proof for Lemma Reduce-l only applies the sym-
metric version of the LLL and can easily be made
constructive using the MT-algorithm [25]. As Feige
points out, Lemma Reduce-k is more problematic: “the
main source of difficulty in this respect is Lemma 2.4,
because there the number of bad events is exponential in
the problem size, and moreover, there are bad events that
involve a constant fraction of the random variables.” In
the following we recapitulate the proof for the Reduce-
k lemma and show how Theorem III.4 can be directly
applied to circumvent these problems and make it con-
structive.

1) Making Lemma Reduce-k Constructive:The random
experiment used to prove Lemma Reduce-k selects each
item independently at random with probability12 . To
characterize the bad events in the application of the
LLL, we need a structural lemma from [15]. Construct a
graph on the players, where there is an edge between
two players if they have an item they both value. A
collection of players is said to be connected if and only
if the subgraph induced by this collection is connected.

We consider two types of bad events:

1) B1: some player has less thank′ =
(

1− log k√
k

)

k
2

items surviving; and
2) Bi for i ≥ 2: there is a connected collection ofi

players from distinct groups whose union of items
valued originally contained at mostiγk items, of
which more thaniδ′ k2 items survive, whereδ′ =

γ
(

1 + log k√
γk

)

.

If none of the above bad events happen, then we can con-
sider the firstk′ items from each set and yet the second
type of bad events do not happen. These events are cho-
sen such thatγ′-goodness (γ′ = δ′ k2

1
k ≤ γ

(

1 + log k√
γk

)

)

8

of the new system certifies that the original system was
γ good. That this is indeed the case follows directly from
Hall’s theorem:

Lemma IV.5 (Lemma 2.7 of [15]). Consider a collection
of n sets and a positive integerq.

1) If for some 1 ≤ i ≤ n, there is a connected
subcollection ofi sets whose union contains less
than iq items, then there is no choice ofq items
per set such that all items are distinct.

2) If for every i, 1 ≤ i ≤ n, the union of every
connected subcollection ofi sets contains at least
iq (distinct) items, then there is a choice ofq items
per set such that all items are distinct.

Feige showed in [15] that for bad events of typeBi, i ≥
1, taking xi = 2−10i log k is sufficient to satisfy the
condition (1) of the asymmetric LLL. More precisely,
suppose we define, for any bad eventB ∈

⋃

i≥1 Bi,
Γ(B) to be as in Section I-C: i.e.,Γ(B) is the set of all
bad eventsA 6= B such thatA andB both depend on
at least one common random variable in our “randomly
and independently selecting items” experiment. Then, it
is shown in [15] that with the choicexi = 2−10i log k

for all events inBi, we have for alli ≥ 1 and for all
B ∈ Bi,

Pr {B} ≤ 2−20i log k ≤ xi

∏

j≥1

∏

A∈(Bj∩Γ(B))

(1− xj) (7)

Thus by the LLL, there exists an assignment that avoids
all the bad events. However, no efficient construction was
known here, and as Feige points out, “the main source
of difficulty in this respect is Lemma 2.4, because there
the number of bad events is exponential in the problem
size, and moreover, there are bad events that involve a
constant fraction of the random variables.” Our Theorem
III.4 again directly makes this proof constructive and
gives an efficient Monte Carlo algorithm for producing
a reduce-k system with high probability:

Lemma IV.6. There is a Monte Carlo algorithm that
produces a valid reduce-k system with probability at least
1− 1/m2.

2) Mapping the solution of the final reduced system
back: Please see [17] for the proof of this mapping,
and of Lemma IV.6.

We can easily check if the algorithm finally produces a
good solution, thus leading to a Las Vegas algorithm for
our problem:

Theorem IV.7. There exists a constantα > 0 and a

randomized algorithm for the Santa Claus problem that
runs in expected polynomial time and assigns items of
total valuation at leastα ·OPT to each player.

V. BEYOND THE LLL T HRESHOLD

This section sketches another application of using the
properties of the conditional LLL-distribution introduced
in Section II in a slightly different way. While all results
presented so far rely on a union bound over events in the
LLL-distribution we use here the linearity of expectation
for further probabilistic analysis of events in the LLL-
distribution. This already leads to new non-constructive
results. Similar to the other proofs involving the LLL-
distribution in this paper this upper bound can be made
constructive using Theorem II.2. Considering that the
LLL-distribution approximately preserves other quanti-
ties such as higher moments, we expect that there is
much more room to use more sophisticated probabilistic
tools like concentration bounds to give both new non-
constructive and constructive existence proofs of discrete
structures with additional strong properties.

The setting we want to concentrate on here is when a
set of bad events is given from which not necessarily
all but as many as possible events are to be avoided.
The exemplifying application is the well known MAX-
k-SAT problem which in contrast tok-SAT asks not
for a satisfying assignment of ak-CNF formula but for
an assignment that violates as few clauses as possible.
Given a k-CNF formula with m clauses a random
assignment to its variables violates each clause with
probability2−k and thus using linearity of expectation it
is easy to find an assignment that violates at mostm2−k

clauses. If on the other hand each clause shares variables
with at most2k/e−1 other clauses then the LLL can be
used to prove the existence of a satisfying assignment
(which violates0 clauses) and the MT algorithm can
be used to find such an assignment efficiently. But what
can be achieved when the number of clauses sharing a
variables is more than2k/e−1? Lemma V.1 (proof in the
full version [17]) shows that a better assignment can be
constructed if it is possible to find a sparsely connected
sub-formula that satisfies the LLL-condition.

Lemma V.1. SupposeF is a k-CNF formula in which
there exists a set of core clausesC with the property
that: (i) every clause inC shares variables with at
most d ≤ 2k/e − 1 clauses inC, and (ii) every
clause inC shares variables with at mostγ(2k/e − 1)
many clauses inC, for someγ ≥ 0. Let n and m
denote the total number of variables and clauses inF ,

9

respectively. Then, for anyθ ≥ 1/poly(n,m), there is
a randomizedpoly(n,m)-time algorithm that produces,
with high probability, an assignment in which all clauses
in C are satisfied and at most an(1+ θ)2−keγ fraction
of clauses fromC are violated. (If we are content with
success-probabilityρ − n−c for some constantc, then
there is also a randomized algorithm that runs in time
poly(n, |C|), satisfies all clauses inC, and violates at
most an(1/ρ) · 2−keγ fraction of clauses fromC. This
can be useful if|C| ≪ m.)

As mentioned in Section I-B, we are also able to prove
the following. Suppose we have, as usual, a system of
independent random variablesP = {P1, P2, . . . , Pn}
and bad eventsA = {A1, A2, . . . , Am}, with depen-
dency graphG = GA. Let us consider the symmetric
case in whichPr[Ai] ≤ p = o(1) for eachi. Suppose
the maximum degree ofG is at mostα(1/(ep) − 1),
for 1 < α < e. We prove that one can construct, in
randomized time polynomial inn andm, an assignment
to thePi such that the number ofAj that hold is at most
(1 + o(1)) · (e(lnα)/α) ·mp.

Acknowledgments:We thank Nikhil Bansal for helpful
clarifications about the Santa Claus problem. The first
author thanks Michel Goemans and Ankur Moitra for
discussing the Santa Claus problem with him in an early
stage of this work. Our thanks are also due to Bill
Gasarch and Mohammad Salavatipour for their helpful
comments.

REFERENCES

[1] N. Alon. A parallel algorithmic version of the Local Lemma.
Random Structures & Algorithms, 2:367–378, 1991.

[2] N. Alon, L. Babai, and A. Itai. A fast and simple randomized
parallel algorithm for the maximal independent set problem.
Journal of Algorithms, 7:567–583, 1986.

[3] N. Alon, G. Gutin, E. J. Kim, S. Szeider, and A. Yeo. Solving
MAX-r-SAT above a tight lower bound. InSODA ’10: Pro-
ceedings of the 21th Annual ACM-SIAM Symposium on Discrete
Algorithms, 2010.

[4] N. Alon and J. H. Spencer.The Probabilistic Method, Third
Edition. John Wiley & Sons, Inc., 2008.

[5] A. Asadpour, U. Feige, and A. Saberi. Santa claus meets
hypergraph matchings. InAPPROX ’08 / RANDOM ’08: Pro-
ceedings of the 11th international workshop, APPROX 2008, and
12th international workshop, RANDOM 2008 on Approximation,
Randomization and Combinatorial Optimization, pages 10–20,
2008.

[6] A. Asadpour and A. Saberi. An approximation algorithm for
max-min fair allocation of indivisible goods. InSTOC ’07:
Proceedings of the 39th annual ACM Symposium on Theory of
Computing, pages 114–121, 2007.

[7] N. Bansal and M. Sviridenko. The Santa Claus problem. In
STOC ’06: Proceedings of the 38th annual ACM Symposium on
Theory of Computing, pages 31–40, 2006.

[8] M. Bateni, M. Charikar, and V. Guruswami. Maxmin alloca-
tion via degree lower-bounded arborescences. InSTOC ’09:
Proceedings of the 41st annual ACM Symposium on Theory of
Computing, pages 543–552, 2009.

[9] J. Beck. An algorithmic approach to the Lovász Local Lemma.
Random Structures & Algorithms, 2(4):343–365, 1991.

[10] I. Bezáková and V. Dani. Allocating indivisible goods. SIGecom
Exch., 5(3):11–18, 2005.

[11] D. Chakrabarty, J. Chuzhoy, and S. Khanna. On allocating
goods to maximize fairness. InFOCS ’09: 50th Annual IEEE
Symposium on Foundations of Computer Science, 2009.

[12] K. Chandrasekaran, N. Goyal, and B. Haeupler. Deterministic
Algorithms for the Lovász Local Lemma.SODA ’10: Pro-
ceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, 2010.

[13] A. Czumaj and C. Scheideler. Coloring non-uniform hyper-
graphs: A new algorithmic approach to the general Lovász local
lemma. InSODA ’00: Proceedings of the 11th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 30–39, 2000.

[14] P. Erdős and L. Lovász. Problems and results on3-chromatic
hypergraphs and some related questions. InInfinite and Finite
Sets, volume 11 ofColloq. Math. Soc. J. Bolyai, pages 609–627.
North-Holland, 1975.

[15] U. Feige. On allocations that maximize fairness. InSODA
’08: Proceedings of the 19th annual ACM-SIAM Symposium on
Discrete Algorithms, pages 287–293, 2008.

[16] U. Feige. On estimation algorithms vs approximation algorithms.
In R. Hariharan, M. Mukund, and V. Vinay, editors,FSTTCS,
volume 2 ofLIPIcs, pages 357–363. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2008.

[17] B. Haeupler, B. Saha, and A. Srinivasan. New constructive
aspects of the lovasz local lemma.CoRR, abs/1001.1231, 2010.

[18] P. Haxell. A condition for matchability in hypergraphs. Graphs
and Combinatorics, 11(3):245–248, 1995.

[19] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routingand
jobshop scheduling inO(congestion + dilation) steps.Combina-
torica, 14:167–186, 1994.

[20] J. K. Lenstra, D. B. Shmoys, and E. Tardos. Approximation algo-
rithms for scheduling unrelated parallel machines.Mathematical
Programming, 46:259–271, 1990.

[21] M. Luby. A simple parallel algorithm for the maximal indepen-
dent set problem.SIAM Journal of Computing, 15(4):1036–1053,
1986.

[22] M. Molloy and B. Reed. Further algorithmic aspects of the Local
Lemma. In STOC ’98: Proceedings of the 30th annual ACM
Symposium on Theory of Computing, pages 524–529, 1998.

[23] M. Molloy and B. Reed.Graph Colouring and the Probabilistic
Method. Springer-Verlag, 2001.

[24] R. Moser. A constructive proof of the Lovász Local Lemma. In
STOC ’09: Proceedings of the 41st annual ACM Symposium on
Theory of Computing, pages 343–350, 2009.

[25] R. Moser and G. Tardos. A constructive proof of the general
Lovász Local Lemma.Journal of the ACM, 57(2):1–15, 2010.

[26] R. A. Moser. Derandomizing the Lovász Local Lemma more
effectively. CoRR, abs/0807.2120, 2008.

[27] B. Saha and A. Srinivasan. A new approximation technique for
resource-allocation problems. InICS ’10: Proceedings of the first
annual Symposium on Innovations in Computer Science, pages
342–357, 2010.

[28] A. Srinivasan. Improved algorithmic versions of the Lovász Local
Lemma. InSODA ’08: Proceedings of the 19th annual ACM-
SIAM Symposium on Discrete algorithms, pages 611–620, 2008.

10

