Do not look up research papers on the Web. Work in a group of 2. Submit one homework solution per group.

Total Point: 150

1. Consider the following algorithm for the Steiner Tree Problem

Algorithm

- Let \(\{s_1, s_2, ..., s_{|S|}\} \) be any ordering of the terminals.
- Let \(T \leftarrow \{s_1\} \)
- For \(i = 2 \) to \(|S| \)
 - Let \(P_i \) be the shortest path connecting \(s_i \) to \(T \).
 - Add \(P_i \) to \(T \)

Show that the above algorithm gives a \(O(\lceil \log_2 |S| \rceil) \) approximation factor for the Steiner Tree Problem

Answer.

Let \(c(i) \) denote the cost of the path \(P_i \) used in the \(i \)th iteration to connect the terminal \(s_i \) to the already existing tree. The total cost of our solution is \(\sum_{i=1}^{|S|} c(i) \). Let \(\{i_1, i_2, ..., i_{|S|}\} \) be a permutation of \(\{1, 2, ..., |S|\} \) such that \(c(i_1) \geq c(i_2) \geq ... \geq c(i_{|S|}) \).

Lemma 1. For all \(j \), the cost \(c(j) \leq \frac{2OPT}{j} \), where \(OPT \) is the cost of an optimal solution to the given instance.

Proof. We prove it by contradiction. Suppose, if possible connecting the \(j \)th highest cost terminal \(s_{i_j} \) is more than \(\frac{2OPT}{j} \). This implies, there exist \(j \) terminals each pay more than \(\frac{2OPT}{j} \) to connect to the tree that exists when they are considered. Suppose \(S' = \{s_{i_1}, s_{i_2}, ..., s_{i_j}\} \) denote this set of terminals.

No two terminals in \(S' \cup \{s_1\} \) are within distance \(\frac{2OPT}{j} \) of each other. If some pair \(x, y \) were within this distance, one of these terminals (say \(y \)) must be considered later by the algorithm than the other. Then cost of connecting \(y \) to the tree will be at most \(\frac{2OPT}{j} \) giving a contradiction.

Therefore, the minimum distance between any two terminals in \(S' \cup \{s_1\} \) must be greater than \(\frac{2OPT}{j} \). Since there must be \(j \) edges in any MST of these terminals, an MST must have cost greater than \(2OPT \). But the MST of a subset of terminals cannot have cost more than \(2OPT \) (recall the proof that MST on terminal nodes gives a 2-approximation to the Steiner Tree problem). Therefore, we obtain a contradiction. \(\square \)
Given this claim, it is easy to prove the desired claim.

\[
\sum_{i=1}^{|S|} c(i) = \sum_{j=1}^{|S|} c(i_j) \leq \sum_{j=1}^{|S|} \frac{2OPT_j}{j} = 2H_{|S|}OPT
\]

2. Given a complete undirected graph \(G = (V, E)\) with nonnegative edge weights, where edge weights satisfy triangle inequality, and \(k\) colors \(c_1, c_2, ..., c_k\), find an assignment \(\phi\) of colors to vertices such that

- Each vertex is assigned exactly one color.
- Let \(d_r(v)\) be the distance to nearest node from \(v\) that is assigned color \(c_r\). Let \(D_v = \max_{r=1}^k d_r(v)\). The assignment must minimize the maximum \(D_v\) over all \(v\), that is find \(\phi\) such that \(\max_v D_v\) is minimized.

(i) Show the above problem is NP-Hard.
(ii) Obtain a 3-approximation algorithm for the above problem.

\textbf{Answer.}

(i) Easy, reduce K-center.

(ii) Follow the K-center algorithm as described in the class. If the guessed distance \(d\) is correct, then in \(G\), every vertex has at least \(k-1\) neighbors. In \(G^2\), compute the maximal independent set \(I_{G^2} = \{v_1, v_2, ..., v_s\}\). Note that \((v_i, v_j) \notin E\), for \(1 \leq i, j \leq s\). For each \(v_i \in I\), put color \(c_1\) in \(v_i\) and colors \(c_2, c_3, ..., c_k\) in any of its \(k-1\) neighbors.

Every vertex has a path of length at most 2 to some vertex in \(I\). Therefore, every vertex can reach all the \(k\) colors within 3 hops. Therefore, when the guess is correct, the maximum distance traveled by any vertex is at most 3\(d\).

3. Given an undirected graph \(G = (V, E)\), find a spanning tree \(T\) of \(G\) that has maximum number of leaves.

(i) Show the above problem is NP-Hard.
(ii) Consider the following local search heuristic.

- Start with any arbitrary spanning tree \(T\)
- While there are edges \(e \in T\) and \(f \notin T\) such that removing \(e\) from \(T\) and including \(f\) creates a spanning tree with more leaves, \(\text{swap}(e, f)\)
- Return \(T\) when no such improving swaps exist.

Show that the above local search algorithm gives an approximation factor of at most 10.

\textbf{Answer.}

To obtain the above result, first prove the following claims. Let \(n_i\) denote the number of nodes of degree \(i\) in \(T\) and let \(n_{\geq i}\) denote the number of nodes of degree at least \(i\) in \(T\).

(a) Prove for any tree \(T\), \(n_{\geq 3}(T) < n_1(T)\).
Proof. Let T be an arbitrary tree. Then

$$\sum_{v \in V} deg_T(v) = 2(n - 1) \quad (1)$$

Using the notation defined above, we have:

$$\sum_{v \in V} deg_T(v) = \sum_{i=1}^{n-1} in_i \quad (2)$$

$$= n_1 + 2n_2 + \sum_{i \geq 3} in_i \geq n_1 + 2n_2 + 3 \sum_{i \geq 3} n_i \quad (3)$$

Therefore, we have

$$n_1 + 3 \sum_{i \geq 3} n_i \leq 2(n - n_2 - 1) = 2n_1 + 2 \sum_{i \geq 3} n_i - 2$$

or

$$\sum_{i \geq 3} n_i \leq n_1 - 2 \quad \square$$

(b) Define a 2-path to be a maximal (longest) path such that all internal nodes in the path have degree exactly 2 in T. Let n_{2Paths} denote the number of such maximal 2-paths. Show $n_{2Paths} < 2n_1(T)$.

Proof. Note that each 2-path is bounded by nodes of degree 1 or at least 3. This implies that $n_{2Paths} \leq n_1 + n_{\geq 3}$. By previous claim, this is at most $2l(T)$, where $l(T)$ denotes the leaves of tree T. \square

Use (a) and (b) to establish an approximation factor of at most 10 for the local search algorithm.

Proof. Let T be an arbitrary spanning tree of G and T' a tree output by our algorithm. Recall that we are trying to upper bound the number of leaves of T by the number of leaves of T'. Consider now the following partition of the nodes of T' into 3 bins: the first bin contains all the nodes of degree 1, the second bin contains all the nodes of degree 2, and the third bin contains all the nodes of degree ≥ 3. We count the maximum number of leaves of T that can be in each bin. The first one can have at most $n_1(T') = l(T')$ leaves since this is the size of the bin. Similarly, the third bin can have at most $n_{\geq 3}(T') \leq l(T')$ leaves. Then, to obtain a 10-approximation, it is sufficient to show that the second bin has at most $8l(T')$ leaves of T.

To show this we further partition the nodes according to the 2-paths that they belong to in T'. Since, the number of 2-paths is at most $2l(T')$, it is sufficient to show that each 2-path can contain at most 4 leaves of T.

Suppose, that is not the case. Then, there exists a 2-path P which contain at least 5 leaves of T. Denote them by y_1, y_2, y, y'_1, y'_2 (see Figure 1). Let y' be a node not in P. Let $path_T(y, y')$
denote the unique path from y to y' in T. Let u be the node closest to y in $path_T(v, v')$ such that u is not in P. Let w be the last node from P on $path_T(y, y')$ before u. Note that none of y_2 and y'_2 belong to $path_T(y, w)$, otherwise they won’t be leaves in T', but $w \in path_T(y, y')$. In other words, $path_T(y, u)$ has to break off from P before y_2 or y'_2. Now by swapping in (u, w), we can remove at least one edge in P incident on either of y_1, y_2, y'_1, y'_2, thus increasing the number of leaves of T'—a contradiction.

4. Obtain an FPTAS for the following problem.

Given n positive integers $a_1 < a_2 < < a_n$, find two disjoint nonempty subsets $S_1, S_2 \subseteq \{1, 2, ..., n\}$ with $\sum_{i \in S_1} a_i \geq \sum_{i \in S_2} a_i$, such that the ratio

$$\frac{\sum_{i \in S_1} a_i}{\sum_{i \in S_2} a_i}$$

is minimized.

Answer. Easy–extend the proof of FPTAS for Knapsack.