1. (i) We studied the following greedy algorithm for dense subgraph computation.

> **Algorithm**
> - Check the density of the entire graph $G = (V, E)$
> - Remove the minimum degree vertex with all its edges
> - Recheck the density of the remaining subgraph
> - Repeat (ii) and (iii)
> - Return the subgraph that has the maximum density among the ones computed

Show how to implement this algorithm to run in time $O(|V| + |E|)$.

(ii) Consider the following greedy algorithm for densest-k subgraph

> **Algorithm**
> - For $i = 1$ to $k/2$
> - Pick the vertex with highest degree. Remove all edges incident on it.
> - End For
> - Let $U = \{v_1, v_2, \ldots, v_{k/2}\}$ be all the vertices picked.
> - Reinitiate the graph $G = (V, E)$
> - Remove any edge that is not incident on at least one vertex in U
> - For $i = 1$ to $k/2$
> - Pick the vertex with highest degree. Remove all edges incident on it.
> - End For

Show that the above algorithm achieves an $O(\frac{n}{k})$ approximation for densest k subgraph.

Points 10+20

2. (i) Suppose the size of each set in unweighted set cover instance is at most d. Show that the greedy algorithm achieves an $(\ln d + 1)$ approximation.

Hint. Suppose $OPT = k$. Show that after the ith set is chosen by the greedy algorithm, at most $\left(1 - \frac{1}{k}\right)n$ elements are left to be covered.
(ii) The tight example shown for unweighted set cover in the class when converted to a vertex cover instance results in a multigraph. Give an example of a simple graph, where the greedy algorithm has logarithmic approximation bound.

(iii) Given an undirected graph \(G = (V, E) \), a dominating set of a graph is a subset \(S \subseteq V \) such that each vertex either belongs to \(S \) or has a neighbor in \(S \). The minimum dominating set problem finds a dominating set of minimum size. Give a reduction from Set Cover to minimum dominating set problem.

Points 30+20+10

3. For bipartite graphs, size of the minimum vertex cover is same as the maximum matching. Give an algorithm to compute vertex cover exactly in bipartite graphs.

Hint. Use maxflow computation in a newly constructed graph.

Points 30

4. (i) Given a ground set \(V \), a function \(f : 2^V \to \mathbb{R}_+ \) is said to be submodular if either of the two conditions hold

(a) For all subsets \(A, B \subseteq V \), \(f(A) + f(B) \geq f(A \cup B) + f(A \cap B) \)

(b) For all \(A \subseteq B \), and \(v \not\in B \), \(f(A + v) - f(A) \geq f(B + v) - f(B) \)

Show that the two conditions are equivalent.

(ii) Let \(f : 2^V \to \mathbb{R}_+ \) be a non-negative submodular function on a set \(V \). Let \(A \subset B \subseteq V \). Prove the followings.

(a) If \(f(A) < f(B) \) then there exists an element \(v \in B \setminus A \) such that \(f(A + v) - f(A) > 0 \).

More generally, there exists an element \(v \in B \setminus A \) such that \(f(A + v) - f(A) \geq \frac{f(B) - f(A)}{|B \setminus A|} \).

(b) If \(f(B) < f(A) \) then there exists an element \(v \in B \setminus A \) such that \(f(B - v) - f(B) > 0 \).

More generally, there exists an element \(v \in B \setminus A \) such that \(f(B - v) - f(B) \geq \frac{f(A) - f(B)}{|B \setminus A|} \).

Points 10+20