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Storage Capacity as an Information-Theoretic
Analogue of Vertex Cover

Arya Mazumdar, Andrew McGregor, and Sofya Vorotnikova

Abstract—Motivated by applications in distributed storage, the
storage capacity of a graph was recently defined to be the
maximum amount of information that can be stored across the
vertices of a graph such that the information at any vertex can be
recovered from the information stored at the neighboring vertices.
Computing the storage capacity is a fundamental problem in
network coding and is related, or equivalent, to some well-
studied problems such as index coding with side information
and generalized guessing games. In this paper, we consider
storage capacity as a natural information-theoretic analogue of
the minimum vertex cover of a graph. Indeed, while it was
known that storage capacity is upper bounded by minimum
vertex cover, we show that by treating it as such we can get a 3/2
approximation for planar graphs, and a 4/3 approximation for
triangle-free planar graphs. Since the storage capacity is closely
related to the index coding rate, we get a 1.923 approximation
of index coding rate for planar graphs and 3/2 approximation
for triangle-free planar graphs. Previously only an obvious 4
approximation of the index coding rate was known for planar
graphs. We then develop a general method of “gadget covering”
to upper bound the storage capacity in terms of the average of
a set of vertex covers. This method is intuitive and leads to the
exact characterization of storage capacity for various families
of graphs, such as cycles with chords and certain Cartesian
product graphs. Finally, we generalize the storage capacity notion
to include recovery from partial failures in distributed storage.
We show tight upper and lower bounds on this partial recovery
capacity that scales nicely with the fraction of failure in a vertex.

I. INTRODUCTION

The Shannon capacity of a graph [17] is a well studied
parameter that quantifies the zero-error capacity of a noisy
communication channel. Some other notions of graph capacity
are also well known (see, e.g., [1]). In this paper, we focus
on a recent definition of graph capacity, called the storage
capacity, that we consider to be a natural information-theoretic
analogue of the minimum vertex cover of a graph.

Suppose, every vertex of a graph can store a symbol
(from any alphabet) with the criterion that the content of any
vertex can be uniquely recovered from the contents of its
neighborhood. Then the maximum information that can be
stored in the graph is called the storage capacity of that graph
[16]. This formulation is motivated by distributed storage, and
generalizes the definition of locally repairable codes [13].

Formally, suppose we are given an n-vertex graph G(V,E),
where V = [n] ≡ {1, 2, . . . , n}. Also, given a positive integer
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q ≥ 2, let H(X) be the Shannon entropy of the random
variable X in q-ary units. Let {Xi}i∈V , be random variables
each with a finite sample space of size q. For any I ⊆ [n], let
XI ≡ {Xi : i ∈ I}. Consider the solution of the following
optimization problem:

maxH(X1, . . . , Xn) (1)

such that H(Xi|XN(i)) = 0, for all i ∈ V where N(i) = {j ∈
V : (i, j) ∈ E} is the set of neighbors of vertex i. This is the
storage capacity of G and is denoted by Capq(G). Note that,
although we hide the unit of entropy in the notation H(·), the
unit should be clear from context, and the storage capacity
should depend on it, as reflected in the subscript in the notation
Capq(G). The absolute storage capacity is:

Cap(G) = lim
q→∞

Capq(G). (2)

In [16], it was observed that the storage capacity is bounded
by the size of the minimum vertex cover VC(G) of G.

Cap(G) ≤ |VC(G)|. (3)

This follows since the neighbors of V \VC belong to VC and
hence H(XV ) = H(XVC(G))+H(XV \VC(G)|H(XVC(G))) =
H(XVC(G)) ≤ |VC(G)|. Since H(XV ) = H(XVC(G)), we
think it is natural to view storage capacity as an information
theoretic analogue of vertex cover. It was also shown in
[16] that the storage capacity is at least the size MM(G)
of the maximum matching of G. Since maximum matching
and minimum vertex cover are two quantities within a factor
of two of each other and maximum matching can be found
in polynomial time, this fact gives a 2-approximation of the
storage capacity. Improvement over maximum matching is
unlikely to be achieved by simple means, since that would
imply a better-than-2 approximation ratio for the minimum
vertex cover problem [15].

This motivates us to look for natural families of graphs
where minimum vertex cover has a better approximation. For
example, for bipartite graphs maximum matching is equal to
minimum vertex cover and hence storage capacity is exactly
equal to the minimum vertex cover. Another obvious class,
and our focus in Section III, is the family of planar graphs for
which a PTAS for vertex cover is known [4], [5]. Note that
many common network topologies are often planar (see, [10]).

In a related broadcast problem called index coding [6] planar
topologies are of interest, and outerplanar topologies have
already been studied [7]. It was shown in [16] that storage
capacity is, in a coding-theoretic sense, dual to index coding and
is equivalent to the guessing game problem of [12]. The index
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coding rate for a graph G is defined to be the optimum value
of the following minimization problem: minH(Y ) where Y is
such that H(Xi|Y,XN(i)) = 0, for all i ∈ V . This is called the
optimum index coding rate for the graph G, and we denote it
as Indq(G). We can also define, Ind(G) = limq→∞ Indq(G).

The index coding problem has been the subject of much
recent attention. In particular it can be shown that any network
coding problem can be reduced to an index coding problem
[11]. It has been shown [16] that, Cap(G) = n− Ind(G), and
hence exact computation of Ind(G) and Cap(G) is equivalent
although the approximation hardness could obviously differ.
Note that, Ind(G) ≥ α(G), where α(G) is the independence
number of G. Since, for planar graphs α(G) ≥ n/4, taking Y
to be X[n] already gives a 4-approximation for index coding
rate for planar graphs (since H(Y ) ≤ n). In this paper, we give
a significantly better approximation algorithm for index coding
rate of planar graphs. Not only that, due to the relation between
index coding and storage capacity, we obtain an approximation
factor significantly better than 2 for storage capacity.

Towards obtaining better approximation ratios for more
general graphs, we then develop several upper bounding tools
for storage capacity. Our approach revisits a linear program
(LP) proposed by Blasiak, Kleinberg, and Lubetzky [8] that
can be used to lower bound the optimum index coding rate or
upper bound the storage capacity. We transform the problem
of bounding this LP into the problem of constructing a family
of vertex covers for the input graph. This in turn allows us
to upper bound the storage capacity of any graph that admits
a specific type of vertex partition. We then identify various
graphs for which this upper bound is tight.

Since minimum vertex cover acts as an absolute upper bound
on the rate of information storage in a graph, a natural question
to ask is, if we store above the limit of minimum vertex cover
in the graph, will any of the repair property be left? This
is similar in philosophy to the rate-distortion theory of data
compression, where one compresses beyond entropy limit and
still can recover the data with some distortion. This question
gives rise to the notion of recovery from partial failure. The
partial repair capacity is a direct generalization in the context
of distributed storage application to handle partial failure of
vertices. In particular, suppose we lose δ ∈ [0, 1] proportion
of the bits stored in a vertex. We still want to recover these
bits by accessing the remaining (1 − δ)-fraction of the bits
in the vertex plus the contents of the neighborhood. What is
the maximum amount of information that can be stored in the
network with such restriction?

A summary of our results is as follows:
1) Planar graphs. We prove a 3/2 approximation of storage

capacity and 1.923 approximation for index coding rate for
planar graphs. For triangle-free planar graphs, we get a 4/3
approximation for storage capacity, and 3/2 approximation for
index coding rate.

2) Tools for finding storage capacity upper bounds. We
develop an approach for bounding storage capacity in terms of
multiple vertex covers. We use the approach to show a bound
on any graph that admits a specific type of vertex partition.
With this we derive capacities of a family of Cartesian product
graphs and a family closely related to outerplanar graphs.

3) Partial failure recovery. We present upper and lower
bounds on the capacity if recovery from neighbors is possible
for up to δ-proportion failure of the bits stored in a server.
These imply that the partial recovery capacity is same as
the storage capacity when δ ≥ 1

2 . For an odd cycle with
n nodes, we show that the partial recovery capacity is at
most n

2 (1 + R2(δ)), where R2(δ) is the maximum rate of a
binary error-correcting code with minimum distance δn. We
also show that capacity of n

2 (2 − h2(δ)) is polynomial time
achievable, where h2(δ) denotes the binary entropy function.
Our bounds are tight, assuming the widely believed conjecture
that R2(δ) = 1− h2(δ).

II. PRELIMINARIES

Let CP(G) denote the fractional clique packing of a graph
defined as follows: Let C be the set of all cliques in G. For
every C ∈ C define a variable 0 ≤ xC ≤ 1. Then CP(G) is the
maximum value of

∑
C∈C xC(|C|−1) subject to the constraint

that
∑
C∈C:u∈C xC ≤ 1 for all u ∈ V. Note that CP(G) can be

computed in polynomial time in graphs where all cliques have
constant size, such as planar graphs. Furthermore, CP(G) is at
least the size of the maximum fractional matching FM(G) and
they are obviously equal in triangle-free graphs since the only
cliques are edges. Capq(G) is related to CP(G) as follows:

Lemma 1. Capq(G) ≥ CP(G) for sufficiently large q.

An equivalent result is known in the context of index coding
[6]. The basic idea is that we can store k−1 units of information
on a clique of size k by assigning k − 1 independent uniform
random variables to k − 1 of the vertices and setting the final
random variable to the sum (modulo q) of the first k − 1
variables. This idea can be extended to the fractional setting.

Below, let G[S] denote the subgraph induced by S ⊆ V .

III. APPROXIMATION ALGORITHMS FOR PLANAR GRAPHS

We next present approximation results for the storage
capacity and optimal index coding rate of planar graphs. In our
storage capacity result we use ideas introduced in [5] for the
purpose of approximating the vertex cover of planar graphs.
Specifically, they first considered a maximal set of vertex-
disjoint triangles, reasoned about the vertex cover amongst these
triangles, and then reasoned about the triangle-free induced
subgraph on the remaining vertices. We consider a similar
decomposition and reason about the integrality gap of vertex
cover in each component. We parameterize our result in terms of
the number of triangles; this will be essential in the subsequent
result on optimal index coding rate.

Theorem 2. Assume G is planar and let T be a set of 3t
vertices corresponding to a maximal set of t vertex disjoint
triangles. Then, 1 ≤ Cap(G)

CP(G) ≤
3t+k

2t+3k/4 where k is the size
of the minimum vertex cover of G[V \ T ]. Hence CP(G) is a
3/2 approximation for Cap(G) and 4/3 approximation if G
is triangle-free.

Proof. Let G′ = G[V \ T ]. Partition the set of vertices into
T ∪ C ∪ I where C is the minimum vertex cover of G′

and I = V \ (T ∪ C) is therefore an independent set. Let
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XV be the set of variables that achieve storage capacity.
Therefore, Cap(G) = H(XV ) = H(XT ) + H(XC |XT ) +
H(XI |XC , XT ) = H(XT ) +H(XC |XT ) ≤ 3t+ k since for
each v ∈ I , H(Xv|XC , XT ) = 0 since N(v) ⊂ C ∪ T .

Consider the fractional clique packing in which each
of the t vertex-disjoint triangles in T receives weight 1.
Then, CP(G) ≥ 2t + CP(G′). Then it remains to show
that CP(G′) ≥ 3k/4. Note that since G′ is triangle-free
planar graph, it is 3-colorable by Grötzsch’s theorem [14].
Furthermore, CP(G′) is the maximum fractional matching
which, by LP-duality, is the minimum fractional vertex cover.
Hence it suffices to show that the size of the minimum
fractional vertex cover of 3-colorable graph is at least 3/4
of the size of the minimum (integral) vertex cover, i.e.,
3k/4. This can be shown as follows. Let x1, . . . , xn be an
optimal fractional vertex cover, i.e., for all edges uv ∈ G′,
xu + xv ≥ 1. Since fractional vertex cover is 1/2-integral,
we may assume each xu ∈ {0, 1/2, 1}. Let I1, I2, I3 be
a partition of {u ∈ [n] : xu = 1/2} corresponding to
a 3-coloring where

∑
v∈I1 xv ≥

∑
v∈I2 xv ≥

∑
v∈I3 xv.

Then consider y1, . . . , yn where yu = 1 iff u ∈ I2 ∪ I3 or
xu = 1. Then

∑
u∈[n] yu ≤

∑
u∈I2∪I3 yu+

∑
u∈[n]:xu=1 yu ≤

2/3 · 2 ·
∑
u:xu=1/2 xu +

∑
u:xu=1 xu ≤ 4/3 · CP(G′) , and

y1, . . . , yn is a vertex cover because for every edge uv, at least
one of {xu, xv} is 1 or at least one of u and v is in I2∪I3.

We next apply the previous theorem, together with the
chromatic number of planar and triangle-free planar graphs to
achieve a 1.923 approximation for Ind(G).

Theorem 3. Assume G is planar and let T be a set of 3t
vertices corresponding to t vertex disjoint triangles. Then,

1 ≤ n− CP(G)

Ind(G)
≤

{
3n+3t
4n−3t + 3

4 for t ≤ 179−
√
16681

192 n

4− 8t
n for t ≥ 179−

√
16681

192 n
.

This is a 3/2 approximation if G is triangle-free and maximizing
over t implies a 1.923 approximation in general.

Proof. From Theorem 2, we know that CP(G) ≥ 2t +
3/4|VC(G′)| where G′ = G[V \ T ]. Therefore,

n− CP(G) ≤ n− (2t+ 3/4|VC(G′)|)
= n− (2t+ 3/4(n− 3t− α(G′)))

= (n+ t)/4 + 3/4α(G′)

On the other hand, Ind(G) ≥ α(G) ≥ α(G′) where α denotes
the size of the maximum independent set of the graph. Note
that α(G) ≥ n/4 since G is planar and thus 4-colorable [2],
[3]. Since G′ has n−3t vertices and is triangle-free and planar
and thus 3-colorable [14], n−3t ≥ α(G′) ≥ (n−3t)/3. These
inequalities imply (n− CP(G))/ Ind(G) is at most

max

(
(n+ t)/4 + 3/4α(G′)

α(G)
,

(n+ t)/4 + 3/4α(G′)

α(G′)

)
≤ max

(
(n+ t)/4 + 3/4(n− 3t)

n/4
,

(n+ t)/4

(n− 3t)/3
+ 3/4

)
= max

(
4− 8t

n
,

3n+ 3t

4n− 3t
+

3

4

)
.

IV. UPPER BOUNDS VIA MULTIPLE VERTEX COVERS

In this section, we start by considering a linear program
proposed by Blasiak, Kleinberg, and Lubetzky [8] that can be
used to lower bound the optimum index coding rate. There
are Ω(2n) constraints but by carefully selecting a subset of
constraints we can prove upper bounds on the storage capacity
for a specific graph without solving the LP.

Our main goal in this section is to relate this linear program
to finding a suitable family of vertex covers of the graph. In
doing so, we propose a combinatorial approach to constructing
good upper bounds that we think makes the process of proving
strong upper bounds more intuitive. This allows us to prove
a more general theorem that gives an upper bound on the
storage capacity for a relatively large family of graphs. As an
application of this theorem we show that a class of graphs
closely related to the family of outerplanar graphs and another
family of Cartesian product graphs have capacity exactly n/2.
Proofs of this and the subsequent sections have been omitted
for space constraints.

A. Upper Bound via the “Information Theoretic” LP

We first rewrite the index coding LP proposed by Blasiak,
Kleinberg, and Lubetzky [8] for the purposes of upper-bounding
storage capacity. We define a variable zS for every S ⊆ V that
will correspond to an upper bound on H(XS). Let cl(S) =
S ∪{v : N(v) ⊆ S} denote the closure of the set S consisting
of vertices in S and vertices with all neighbors in S.

maximize zV s.t. z∅ = 0

zT − zS ≤ |T \ cl(S)| ∀S ⊆ T
zS + zT ≥ zS∩T + zS∪T ∀S, T

The second constraint corresponds to H(XT ) − H(XS) =
H(XT |XS) = H(XT |Xcl(S)) ≤ H(XT\cl(S)) ≤ |T \ cl(S)| ,
whereas the last constraint follows from the sub-modularity
of entropy. Hence, the optimal solution to the above LP is an
upper bound on Cap(G). We henceforth refer to the above
linear program as the information theoretic LP.

B. Upper Bound via Gadgets

k-cover by gadgets is a technique for proving upper bounds
on the storage capacity of graph. The core idea is to construct
a set of k vertex covers for the graph via the construction of
various “gadgets”. A gadget g(A,B) is created as follows: take
two sets of vertices A and B, take their closures cl(A) and
cl(B), find S = cl(A)∪cl(B) and T = cl(A)∩cl(B). Then S
and T form a gadget. Call S the outside of the gadget and T the
inside. We note that by taking A = {v} and B = ∅ we obtain
a gadget with the outside {v} and empty inside (assuming
v has no neighbors of degree one); call such gadget trivial.
Define the weight of a gadget to be |A|+ |B|. If we color every
inside and outside gadget set with one of k colors such that
the union of all sets of the same color forms a vertex cover,
the total weight of gadgets in such coloring provides an upper
bound on kCap(G). Note that for k = 1 using gadgets with
non-empty inside can only increase the total weight, so the only
gadgets we need to consider are the trivial ones corresponding
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to individual vertices, and thus the construction is just a single
vertex cover.

We can formulate the k-cover by gadgets (for fixed k) as
the following linear program: Let xS,c be a variable where
S is a set that is an outside or an inside of a gadget and c
is one of k colors. Each variable has a corresponding weight
wS,c = (|A|+ |B|)/2 where A and B are the 2 sets used to
form the gadget that S is a part of. xS,c = 1 if set S is colored
with color c and 0 otherwise.

minimize
1

k

∑
S,c

wS,cxS,c

s.t.
∑
S:u∈S

xS,c +
∑
S:v∈S

xS,c ≥ 1 ∀(u, v) ∈ E,∀c

∑
c

xH,c =
∑
c

xH′,c

for all gadgets, where H
and H ′ are the outside
and inside of the gadget

The first condition states that every collection of sets of a fixed
color is a vertex cover and the second states that the outside
and inside of every gadget are used the same number of times.

Theorem 4. Any feasible integral solution to the above k-cover
by gadgets LP is an upper bound on Cap(G).

Proof. We prove this by showing that k-cover by gadgets fol-
lows from the fact that the optimal solution of the information
theoretic LP is an upper bound. First, note which constraints
correspond to the steps of forming a gadget:

zA ≤ |A| , zB ≤ |B| take sets A and B
zcl(A) − zA ≤ 0 find closure of A
zcl(B) − zB ≤ 0 find closure of B

zS + zT ≤ zcl(A) + zcl(B)
find S = cl(A) ∪ cl(B) and
T = cl(A) ∩ cl(B)

If we sum all the constraints, we obtain zS + zT ≤ |A|+ |B|.
Assume, that we used g gadgets in the cover. By summing all
corresponding constraints, we get zS1 +zT1 + · · ·+zSg +zTg ≤
|A1|+|B1|+· · ·+|Ag|+|Bg|. Group the sets into color classes
C1, . . . , Ck. Let Ui = ∪S∈Ci

S. The corresponding constraints
are then, for all i ∈ [k], zUi

−
∑
S∈Ci

zS ≤ 0 and zcl(Ui) −
zUi
≤ 0. Note that zV = zcl(Ui) since Ui is a vertex cover. By

summing the 2k constraints and the one obtained from building
gadgets, we get kzV ≤ |A1|+ |B1|+ · · ·+ |Ag|+ |Bg|.

We next illustrate the use of the k-cover via gadgets approach
with a couple of examples. First, we re-prove a result of Blasiak
et al. [9] via a 2-cover by gadgets. Then we give an example
of an outerplanar graph where it is necessary to consider a
3-cover by gadgets to establish a tight bound.

a) Odd Cycles: We prove that the storage capacity of an
odd cycle of length n is n/2; see Figure 1(a) for an example
where n = 9. FM(Cn) = n/2, thus Cap(Cn) ≥ n/2. For the
upper bound we form a gadget g(A,B) by taking A = {v1, v3},
B = {v2, v4} and obtaining outer set S = {v1, v2, v3, v4} and
inner set T = {v2, v3}. On the rest of the vertices we place
trivial gadgets. Color S and trivial gadgets on v6, v8, . . . , vn−1
green, color T and trivial gadgets on v5, v7, . . . , vn red. Green
and red sets are then vertex covers and the total weight of all
gadgets is n. Thus, Cap(Cn) ≤ n/2.

1
2

3

4

56

7

8

9

(a) An Odd Cycle.
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9

(b) An Outerplanar Graph.

Fig. 1. Two examples of k-cover upper bounds. See text for details.

b) An Outerplanar Graph: We prove that the storage
capacity of the graph in Figure 1(b) is 14/3. This capacity
is achieved by the fractional clique cover. Create gadgets
g1(A1, B1) and g2(A2, B2) from A1 = {v1, v3}, B1 =
{v2, v4}, A2 = {v5, v7}, and B2 = {v6, v8}. Place a trivial
gadget on each of the vertices v2, v4, v5, v7 and two trivial
gadgets on v9. Color the sets as:
• Red: v5, v7, v9 and the inside of gadget g1
• Blue: v2, v4, v9 and the inside of gadget g2
• Green: the outside sets of both gadgets

Each color corresponds to a vertex cover and the total weight
of gadgets is 14.

C. n/2 Upper Bound via Vertex Partition

The next theorem uses a 2-cover by gadgets to prove
that a certain family of graphs have capacity at most n/2.
Subsequently, we will use this theorem to exactly characterize
the capacity of various graph families of interest.

Theorem 5. Suppose that the vertices of a graph G can be
partitioned into sets X and Y such that:

1) G[X] and G[Y ] are both bipartite.
2) SX is an independent set in G[X] and SY is an indepen-

dent set in G[Y ]

where SX ⊆ X consists of all vertices in X with a neighbor
in Y and SY ⊆ Y consists of all vertices in Y with a neighbor
in X . Then Cap(G) ≤ n/2.

We next apply Theorem 5 to prove that certain families of
graphs have storage capacity exactly n/2.

1) Cartesian Product of a Cycle and a Bipartite Graph:
The Cartesian product G1�G2 of graphs G1 = (V1, E1) and
G2 = (V2, E2) has vertex set V1 × V2 and (u, u′)(v, v′) is an
edge iff u = v and u′v′ ∈ E2 or u′ = v′ and uv ∈ E1.

Theorem 6. Let Ck be a cycle with k > 3, B a bipartite
graph, and G = Ck�B. Then Cap(G) = n/2, where n is the
number of vertices in G.

2) Cycles with Well-Separated Chords: Note that any
(connected) outerplanar graph without cut vertices is a cycle
with non-overlapping chords. The family of graphs we consider
is more general as we permit the chords to overlap, but more
restrictive since we require the endpoints of these chords to be
far apart on the cycle. A natural open question is to characterize
Cap(G) for all outerplanar graphs. All that was previously
known is that if we assume each Xi is a linear combination of
{Xj}j∈N(i), then Cap(G) equals integral clique packing [7].
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Theorem 7. Let G be a cycle with a chords whose endpoints
are at least distance 4 apart on the cycle. Then Cap(G) = n/2.

V. PARTIAL RECOVERY

We now extend the notion of storage capacity to cover for
partial failures. This is a new generalization, that, as far as we
understand, does not have a counterpart in index coding. As
before, suppose we have a graph G([n], E) and every vertex
i ∈ [n] stores a random vector Xi ∈ Fmq . We want the following
repair criterion to be satisfied: if up to any δ ∈ [0, 1] proportion
of the m coordinates of Xi are erased, they can be recovered
by using the remaining content of the vertex i and XN(i), the
contents in the neighbors of the vertex.

We define the partial recovery capacity of G to be the
normalized asymptotic maximum total amount of information
(in terms of q-ary unit) that can be stored in the graph G,
Capq(G, δ) = limm→∞

H(X1,X2,...,Xn)
m . It is easy to show

Capq(G, 0) = n and Capq(G, 1) = Cap(G). We will prove
upper and lower bounds for Capq(G, δ).

A. Impossibility bound

The partial recovery capacity can be defined via an entropy
maximization problem, generalizing the storage capacity. Let
Aq(m, d) be the maximum possible size of a q-ary m-length
error-correcting code with minimum distance d.

Theorem 8. Let H(X) be the entropy of X measured in q-ary
units. Suppose, Xi ∈ Fmq , i ∈ [n]. For a graph G([n], E),
Capq(G, δ) is upper bounded by the solution of the following
optimization problem: max limm→∞H(X1, . . . , Xn)/m, such
that, H(Xi | XN(i)) ≤ logq Aq(m, δm+ 1).

Define Rq(δ) ≡ limm→∞ logq Aq(m, δm+ 1)/m assuming
the limit exists. Since Rq(δ) = 0 for δ ≥ 1− 1/q, we deduce:

Corollary 9. For any graph G, Capq(G, δ) = Cap(G) for
δ ≥ 1− 1

q . In particular, Cap2(G, δ) = Cap(G) for δ ≥ 1
2 .

We next generalize the technique of upper bounding the
storage capacity via an information theoretic linear program.

Theorem 10. The optimal solution to the following LP is an
upper bound on Capq(G, δ).

maximize zV s.t. z∅ = 0

zT − zS ≤ f(T, S),∀S ⊆ T
zS + zT ≥ zS∩T + zS∪T ∀S, T

where f(T, S) = |T \ S| − (1−Rq(δ))|(cl(S) \ S) ∩ T |.

Odd Cycles: Consider an odd cycle with n vertices (n is odd).
The above LP implies, n+2Rq(δ)+Rq(δ)(n−2) ≥ 2zV −2z∅
and thus Capq(G, δ) ≤ zV ≤ n

2 (1 +Rq(δ)).

B. Achievability bound

A naive achievability bound is Capq(G, δ) ≥ n(1− hq(δ))
for δ ≤ 1/2, where hq(x) ≡ x logq(q − 1)− x logq x− (1−
x) logq(1− x). This follows by using an error-correcting code
of length m, distance δm+1, and rate 1−hq(δ) in each of the
vertices. Such codes exist, by the Gilbert-Varshamov bound.

Also, Capq(G, δ) ≥ 0, for 0 ≤ δ ≤ 1− 1
q . This simple bound

can be improved by more carefully designing a code.

Theorem 11. Given a graph G, let C be the set of all cliques of
G. The generalized clique packing number CPδ(G) is defined
to be the optimum of the following linear program. For 0 ≤
xC ≤ 1,∀C ∈ C, max

∑
C∈C xC(|C| − hq(δ)), such that,∑

C∈C:u∈C xC ≤ 1. Then, Capq(G, δ) ≥ CPδ(G) if δ ≤
1− 1/q, and Capq(G, δ) ≥ CP(G) if δ > 1− 1/q.

Odd Cycles: Consider an odd cycle on n nodes. Since there
is a fractional matching of size n

2 , we have Capq(G, δ) ≥
n
2 (2 − hq(δ)) for δ ≤ 1 − 1/q, and Capq(G, δ) ≥ n

2 when
δ > 1− 1

q . Compare this with the impossibility bound that we
have, Capq(G, δ) ≤ n

2 (1 + Rq(δ)). It is widely conjectured
that the optimal rate of an error-correcting code is given by
Rq(δ) = 1− hq(δ), for small q, which is also known as the
Gilbert-Varshamov conjecture. If this conjecture is true, then
our upper and lower bounds match exactly. In particular, for
large q (i.e., q →∞), we have hq(δ)→ δ and Rq(δ)→ 1− δ.
Hence, our bounds match definitively in the regime of large q.
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