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Estimation of Sparsity via Simple Measurements
Abhishek Agarwal Larkin Flodin Arya Mazumdar

Abstract—We consider several related problems of estimating
the ‘sparsity’ or number of nonzero elements d in a length n
vector x by observing only b = M�x, where M is a predesigned
test matrix independent of x, and the operation � varies between
problems. We aim to provide a ∆-approximation of sparsity for
some constant ∆ with a minimal number of measurements (rows
of M ). This framework generalizes multiple problems, such as
estimation of sparsity in group testing and compressed sensing.
We use techniques from coding theory as well as probabilistic
methods to show that O(D logD logn) rows are sufficient when
the operation � is logical OR (i.e., group testing), and nearly
this many are necessary, where D is a known upper bound on
d. When instead the operation � is multiplication over R or
a finite field, we show that respectively Θ(D) and Θ(D log n

D
)

measurements are necessary and sufficient.

I. INTRODUCTION

Suppose that we want to identify an n dimensional vector
x ∈ Fn, however, we can only observe the output b where

M � x = b (1)

for a designed matrix M ∈ Fm×n. Let Mij denote the (i, j)th
entry of M and let xi denote the ith component of x. We
will frequently refer to a single row of M as a “test” or
“measurement.” If we define the operation � in eq. (1) as
standard matrix multiplication over the field, and F = R,
the problem of identifying x is known as the compressed
sensing problem (and solvable with m � n tests when x
is ‘sparse’, see e.g. [5]). If instead we define the operation �
as the logical OR, so that bi :=

∨
j:Mij=1 xj , and F = F2, the

identification problem is known as the group testing problem.
We can easily identify x when m ≥ n, for example by taking
M to be the identity matrix. Let d be the sparsity or number
of nonzero entries of the vector x. For the case when it is
known a priori that x is sparse (that is to say d � n), it has
been shown that m = O(d2 log n) measurements are sufficient
for identification in the group testing setting, and even fewer
measurements, m = 2d, are necessary and sufficient in the
compressed sensing setting. The group testing result is tight
up to a log d factor (see, e.g., [10], [15]).

Without any information about x, it would be desirable to
first estimate d, and then use this estimate to choose a suitable
strategy to identify the d-sparse vector x. A considerable body
of research (see surveys in [13], [10]) has focused on the
identification problem when an upper bound on d is known
in advance. In comparison less work has been done on the
problem of simply estimating d, without trying to determine
which specific entries are nonzero [9], [8], [6], [7], [17],
[2]. For group testing in the adaptive setting (when each
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subsequent test can depend on the results of previous tests), a
recent result of Falahatgar et al. [11] allows approximation
of d in as few as O(log log d) tests, though with a small
probability of error. In this paper, we solely concentrate on
the nonadaptive version.

In particular, we provide tight upper and lower bounds on
the number of measurements required by any deterministic
algorithm (a predesigned matrix) for estimating d within
a constant multiplicative factor of ∆ (∆-approximation) in
three different settings of this problem (i.e., definitions of the
operation � and field F in eq. (1)). Note that ∆-approximation
implies an estimate d̂ such that

1

∆
≤ d̂

d
≤ ∆. (2)

Earlier results by Damaschke and Muhammad [9], [8] in
the nonadaptive group testing setting show that when no upper
bound on the number of defectives is known, O(log n) queries
are needed to approximate d even when the scheme is allowed
to fail for a small number of inputs, and that any deterministic
strategy capable of exactly determining d requires enough
information to reconstruct the vector x. In the group testing
model, we restrict our attention to the unstudied problem of
bounds for nonadaptive approximation schemes which work
for all inputs, i.e., those that always produce an estimate of d
within the specified range of allowable estimates.

The majority of work in the area of compressed sensing
is concerned with the more difficult identification problem of
how to proceed when x is not exactly sparse, but instead is
approximately sparse, meaning it is close in `2 norm to a
sparse vector. To our knowledge all such works are concerned
with recovery of the vector x, rather than estimation of its
sparsity. Another set of works from both the compressed
sensing and signal processing literatures [14], [16], [18], [12]
focus on the related problem of “sparsity pattern recovery,”
which involves identifying the positions of the nonzero (or
largest) entries of the vector x, but not their values.

We will require our tests to be non-adaptive, but in contrast
to existing works, we focus only on estimating the sparsity of
x, under the assumptions of absolute sparsity (as opposed to
approximate sparsity) and no additional noise, over both finite
fields and R.

First, in section II we identify a necessary and sufficient
condition on the matrix M for ∆-approximation to be possible.
This condition applies to all models which we consider. In
section III, we look at the group testing model specifically;
given an upper bound D on the number of defectives d,
we demonstrate a lower bound Ω(min{n,D log n

D∆2 }) on
the number of measurements needed to ∆-approximate d
without error. The lower bound uses a simple and elegant
combinatorial approach to bound the size of a cover of the
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space of possible input vectors x, by showing all such vectors
with the same output b = M � x must be elements of the
same poset of the Boolean lattice. We also show that this
lower bound is nearly tight by demonstrating the existence of
a matrix M with m = O(min{n,D log n logD

log ∆}) rows that ∆-
approximates d. In section IV, we take the operation � to be
multiplication in either Fq or R, and exhibit close connections
between the number of tests needed to approximate d and
existing quantities in coding theory; this allows us to prove
lower and upper bounds on the number of tests that are tight
up to constant factors. Our main results are summarized in
table I, though some bounds are more fine-grained than the
table implies.

TABLE I: Number of Measurements Needed

Model D = n
D = o(n)

Lower Bound Upper Bound

Group Testing Θ(n) D log
(

n
D∆2

)
O( log D

log ∆
D logn)

Compressed
Sensing over
Fq , q < n

Θ(n) D
2

logq
n
D

2D logq
n
D

Compressed
Sensing over R
or Fq , q ≥ n

Θ(n) D − 1∗ 2D

∗Assuming D ≥ 2b∆2c − 4.

II. PRELIMINARIES AND CONDITION FOR
APPROXIMABILITY

Throughout, we write log x to mean log2 x, and ||x||`0 to
mean the sparsity or number of nonzero entries of the vector
x. We will denote the set {1, 2, . . . , n} by [n]. An `-subset of
a set S is a simply a subset of S of size `.

For the estimation problem defined in section I in all mod-
els, we have the following necessary and sufficient condition
on the matrix M for it to be used to ∆-approximate d, the
sparsity of the vector in question. For a set S ⊆ [n], let v(S)
denote the set of vectors with support S.

Theorem 1. Let ∆ > 1. Let M ∈ Fm×n be a matrix such
that there exists a decoder producing a ∆-approximation d̂ of
d = ||x||`0 from observing b = M � x, for any x ∈ Fn, and
assuming D to be a known upper bound on d. Consider sets
S1, S2 ⊆ [n] such that |S1| ≤ |S2| ≤ D. Then M satifies,

|S1|
|S2|

> ∆2 =⇒ (M � v(S1)) ∩ (M � v(S2)) = ∅. (3)

where M�v(S) := {M�v : v ∈ v(S)}. Conversely, for any
matrix M satisfying eq. (3), there exists a decoder producing
an estimate d̂ that satisfies the approximation criteria in
eq. (2).

Proof. In the forward direction, given a matrix M we show
that if eq. (3) is not satisfied for two vectors, then no
decoder satisfying eq. (2) can exist. Therefore, assume that for
S1, S2 ⊆ [n], |S1|

|S2| ≥ ∆2 and M � v(S1) ∩M � v(S2) 6= ∅.
Then a deterministic decoder must output the same estimate
d̂ when the observation belongs to M � v(S1)∩M � v(S2).
Now, any estimate d̂ will violate eq. (2) for at least one of a
pair of vectors in v(S1) and v(S2).

For the converse assume eq. (3) holds for the matrix M .
When observing the result vector b, we define

d̂ =

√√√√√
(

max
y∈Fn:
||y||`0≤D
b=M�y

||y||`0
)(

min
y∈Fn:

b=M�y

||y||`0
)
,

i.e., we estimate d by the geometric mean of the minimum and
maximum weight vectors y with weight ≤ D and M�y = b.

From eq. (3) we are guaranteed that the estimate above is
within a ∆ factor of both the lowest and highest weight vectors
y with b = M � y, so will satisfy eq. (2).

Note that the above proof of decoder existence does not
imply the existence of an efficient decoder; the decoder
described in the proof may take time exponential in n to
determine the minimum and maximum weight vectors y with
b = M � y. We will see that despite this, efficient decoding
is possible for some specific matrices with this property.

III. DEFECTIVE APPROXIMATION FOR GROUP TESTING

Throughout this section we take F = F2 and assume that
the operation � denotes logical OR as defined in section I. For
a subset S ⊆ [n], we write v(S) to mean the unique binary
vector with support S. We establish upper and lower bounds
on the number of rows of a matrix capable of ∆-approximating
d without error. As is standard in nonadaptive group testing,
we will typically assume that an initial upper bound D on
the number of defectives d is known. We then show that the
number of rows m of the matrix M in eq. (1) must satisfy
m = Ω(D log n

D ). On the other hand, we show that there
exists a matrix M with m = O(D logD log n) rows satisfying
eq. (3). When no bound is known on the number of defectives,
we can take D = n, and in this scenario our bound shows that
a linear (in n) number of measurements is required to find
an estimate d̂ satisfying eq. (2). This implies only constant
factor improvement is possible, as n measurements suffice to
determine d exactly.

Theorem 2. Suppose M ∈ Fm×n2 is a matrix capable of ∆-
approximating d when d ≤ D ≤ n

2 . Then m ≥ D log n
D −

2D log ∆−D log e.

Proof. Assume two sets S1, S2 ⊆ [n] satisfy M � v(S1) =
M � v(S2). Then using the definition of the operation � as
logical OR, we have M�v(S1) = M�v(S2) = M�v(S1∪
S2).

Let PD([n]) denote the set {A ⊆ [n] : |A| ≤ D} of possible
defective subsets with size at most D. Let P1,P2, . . . ,Pt
denote a partition of PD([n]) such that A,B ∈ Pi if and
only if M � v(A) = M � v(B). Then we must have

A,B ∈ Pi =⇒ A ∪B ∈ Pi. (4)

Since the matrix M is capable of ∆-approximation, by theo-
rem 1 any two sets A,B with |A| ≥ |B| in the same part of
the partition Pi must also satisfy

|A| ≤ ∆2 · |B|. (5)

Consider the lattice L on PD([n]) ordered by inclusion.
Then the Pi must form posets in L with unique maximal
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elements, as they are closed under union. For any matrix M ,
if t is the number of distinct vectors b arising as b = M � x
for any potential vector of defectives x, then each row of M
corresponds to a test with either a positive or negative result,
so there can be at most 2m distinct vectors b. Thus t ≤ 2m,
so m ≥ log t. Since any partition is also a cover, we lower
bound t by finding a lower bound on the minimum size of a
cover of PD([n]) with posets satisfying eqs. (4) and (5).

From eq. (5), we see that a poset P containing an `-subset
of [n] cannot have an element of size greater than `∆2. Then
by [3, Sec 4.7] we know that the minimum size t` of a cover
of all `-subsets of [n] with posets satisfying eqs. (4) and (5)
satisfies t` ≥

(
n
`

)
/
(
`∆2

`

)
.

The minimum size of any cover of PD([n]) is at least the
size of the minimum cover of the `-subsets of [n], for any
particular value of ` ≤ D. Thus, t ≥ max`≤D

(
n
`

)
/
(
`∆2

`

)
≥(

n
D

)
/
(
D∆2

D

)
. Then as m ≥ log t, we have

m ≥ log

((
n

D

)
/

(
D∆2

D

))
≥ log

(( n
D

)D
/

(D∆2)D

D!

)
= D log n− 2D logD − 2D log ∆ + logD!

≥ D log n−D logD − 2D log ∆−D log2(e).

using Stirling’s approximation in the final step.

Now consider the case when no nontrivial upper bound on d
is known. When D = n we have the following result, proved
straightforwardly by bounding max`≤n

(
n
`

)
/
(
`∆2

`

)
.

Corollary 3. Consider a matrix M ∈ Fm×n2 that can be used
for ∆-approximation in the group testing model with only the
trivial upper bound D = n on the true number of defectives
d, and ∆ a constant. Then for large n,

m ≥ n
(
h

(
1

∆4

)
− 1

∆2
h

(
1

∆2

))
= Ω(n),

where h(x) denotes the binary entropy function.

We now show the existence of a matrix M capable of ∆-
approximation with m = O(D logD

log ∆ log n) rows for any D
and ∆ > 1. We modify a construction of Damaschke and
Muhammad [8] for nonadaptive sparsity approximation with
error, and show that with additional repetition of certain tests,
we can achieve no error.

Theorem 4. Given an initial upper bound D on the number
of defectives, there exists a matrix M ∈ Fm×n2 that can ∆-
approximate d in the group testing model such that m =
O(D logD

log ∆ log n). Furthermore, this matrix has a decoding
scheme that requires only O(m) = O(D logD

log ∆ log n) time.

Proof. Let Bern(p) denote the Bernoulli variable on F2 such
that P(Bern(p) = 1) = p. Let d̂ denote the estimate of d,
which is specific to the matrix M . We show that a matrix
constructed in a random way combined with a specific esti-
mator d̂ works simultaneously for all vectors of defectives with
nonzero probability. To this end, we define the bad events E1

and E2 to be the events that our estimate is too far off, the
complements of the estimation criteria in eq. (2):

E1 :
d̂

d
> ∆, (6a)

E2 :
d̂

d
<

1

∆
. (6b)

Construction: We modify the random construction in [8]
to construct M ∈ Fm×n2 . For this matrix M , we show
that the probability of either bad event occurring over all
defective vectors with d ≤ D is strictly less than 1 when
m = O(D logD

log ∆ log n). Thus there exists a matrix M with m
rows for which none of the bad events in eq. (6) occur for any
defective vector of weight at most D.

Consider a fixed parameter b > 1, and let δ := logb ∆.
Take s to be a fixed parameter such that s < δ − 1, and let
l ∈ {blogb ln 2c, blogb ln 2c+ 1, . . . , dlogbDe} denote indices
for subsets of tests. For each index l, we construct t random
identically and independently distributed (iid) tests such that
each element is selected in the test for index l with probability
1− (1− 1

D )b
l

. Then the total number of such indices is N :=
dlogbDe−blogb ln 2c+1, so the matrix M consists of tN rows
with the elements in row indices j ∈ {(l− 1)t+ 1, (l− 1)t+
2, . . . , lt} selected randomly and independently as Bern(1 −
(1− 1

D )b
l

). Thus the probability of row j for j ∈ {(l− 1)t+
1, (l− 1)t+ 2, . . . , lt} having a negative result (containing no
defectives) is ql(d) := (1− 1

D )db
l

. Now, there exists an index
`(d) ∈ {blogb ln 2c, blogb ln 2c + 1, . . . , dlogbDe} (or simply
`) such that 1

2 ≤ q`−s(d) < 1
21/b , because ql+1 = qbl .

Let L ∈ {blogb ln 2c, blogb ln 2c+ 1, . . . , dlogbDe} denote
the random variable corresponding to the maximum index
for which the majority of tests were negative. Our decoding
algorithm will be to take the estimate d̂ of d such that
qL−s(d̂) = 1

2 , i.e., d̂ = −1
bL−s log(1− 1

D )
. Then the probability

of bad event E1 for a defective set of size d is

P(E1) = P

(
d̂

d
> ∆

)
≤ P

(
d̂ ≥ d∆

)
= P

(
1

2
≤
(

1− 1

D

)d bL+δ−s)
= P

(
1

2
≤ qL+δ−s(d)

)
= P(L ≤ `(d)− δ) =

∏
`(d)−δ<l≤dlogbDe

F

(⌈
t− 1

2

⌉
; t, ql(d)

)
,

where F (k;n, p) = P(X ≤ k) denotes the cumulative dis-
tribution function for X =

∑n
i=1Xi for Xi ∼ Bern(p) iid.

Similarly, for bad event E2 we have

P(E2) = P

(
d̂

d
<

1

∆

)
≤ P

(
d̂ ≤ d/∆

)
= P

(
1

2
≥
(

1− 1

D

)d bL−δ−s)
= P

(
1

2
≥ qL−δ−s(d)

)

= P(L ≥ `(d) + δ) =

dlogbDe∑
l=`(d)+δ

F

(⌈
t− 1

2

⌉
; t, 1− ql(d)

)
.

Thus the probability of the event Ẽ2, defined to be the union
of the events E2 for all defective sets of size d ≤ D, can be
upper bounded by union bound as follows:

P
(
Ẽ2

)
≤

∑
1≤i≤D

(
n

i

)
P(E2)
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≤
∑
i

(
n

i

) ∑
`(d)+δ≤l≤dlogbDe

F

(⌈
t− 1

2

⌉
; t, 1− ql(i)

)

≤
∑
i

(
n

i

)
·N · F

(⌈
t− 1

2

⌉
; t, 1− qdlogbDe(i)

)
≤
∑
i

(
n

i

)
·N · exp

(
−t D

(
1

2
||1− qdlogbDe(i)

))
,

where D(a||p) := a log(ap ) + (1 − a) log(1−a
1−p ) denotes the

KL divergence between a and p, and the last inequality
follows from the bound on F (k;n, p) in [4]. Then applying
the inequalities

(
n
i

)
≤ ni and qdlogbDe ≤ e−i, we have that

P
(
Ẽ2

)
is at most

N
∑

1≤i≤D

exp

(
i lnn+

t

2

(
1 + log(1− qdlogbDe)−

i

ln 2

))
.

Now, it can be seen that for t = O(log n), P
(
Ẽ2

)
goes to 0.

Similarly, we bound the probability of Ẽ1, the union of the
events E1 for all defective sets of size d ≤ D, recalling that
δ > s+ 1:

P
(
Ẽ1

)
≤

∑
1≤i≤D

(
n

i

)
P(E1)

≤
∑
i

(
n

i

) ∏
`(i)−δ<l≤dlogbDe

F

(⌈
t− 1

2

⌉
; t, ql(i)

)

≤
∑
i

(
n

i

) ∏
`(i)−δ<l≤`(i)−s

F

(⌈
t− 1

2

⌉
; t, ql(i)

)

≤
∑
i

(
n

i

)
exp

(
− δ − s− 1

2q`(i)−s−1
· t
(
q`(d)−s−1 −

1

2

)2
)
,

where the last inequality follows from the Chernoff bound for
Binomial distribution. Thus P

(
Ẽ1

)
is at most

D · exp

(
D lnn− δ − s− 1

2q`(d)−s−1
· t
(
q`(d)−s−1 −

1

2

)2
)

≤ D · exp

(
D lnn− δ − s− 1

21−b−1 · t
(

1

2b−1 −
1

2

)2
)
.

It can be seen that for t = O(Dδ log n), P
(
Ẽ1

)
goes to 0.

Therefore when the number of tests m = O(D logD
log ∆ log n),

there exists a matrix which estimates d within a multiplicative
factor of ∆ for all defective vectors of weight ≤ D.

The decoding requires only computing a function of the
largest index l for which the corresponding block of t tests had
a majority of test results negative, and this index can easily
be determined in a single pass over the result vector, requiring
O(m) time.

IV. DEFECTIVE APPROXIMATION BY LINEAR OPERATIONS

In this section we assume that the operation � denotes
standard matrix multiplication over a field F, and as such will
typically write Mx instead of M � x. We take F to be either
finite or R, the latter of which is the setting of the well-studied

compressed sensing problem. Our aim now is to bound the size
of a matrix M that satisfies the criteria for ∆-approximation
in this model. Consider a vector space V ⊆ Fn. Call such a
vector space (∆, D)-distinguishing if it has the property that
for parameters ∆ > 1, D ≤ n, any two vectors x and y in
the same coset of V (so there exists v1,v2 ∈ V such that
x = z+v1,y = z+v2 for some z ∈ Fn) both having weight
at most D differ in weight by a factor of at most ∆2. In other
words, if ||x||`0 ≤ ||y||`0 , then ||y||`0 ≤ ∆2||x||`0 . We can
use this property to lower bound the rank (and thus the number
of rows) of any ∆-approximating matrix.

Theorem 5. For an m×n matrix M which can ∆-approximate
the sparsity, d, of any vector with sparsity at most D in the
linear operations model, it is necessary that

rank(M) ≥ n− max
(∆,D)-distinguishing V

dim(V ). (7)

Proof. We show that the nullspace of any such matrix M is a
(∆, D)-distinguishing vector space. By our necessary criteria
for ∆-estimation, we have for any vectors x,y with ||x||`0 ≤
||y||`0 ≤ D, that when Mx = My, then ||y||`0 ≤ ∆2||x||`0 .
Now, since M(x − y) = 0 if and only if x and y are in the
same coset of kerM , we have rank(M) ≥ min{rank(N) :
kerN is (∆, D)-distinguishing}.

We use the condition in theorem 5 to bound the number of
measurements needed, as rank(M) is a lower bound on the
number of rows of M . Let AF(n, dmin) denote the maximum
dimension of a subspace in Fn that does not contain any
nonzero vector in {x ∈ Fn : ||x||`0 < dmin}. Note that
for finite fields Fq , the quantity AFq (n, dmin) denotes the
maximum dimension of a linear q-ary code with minimum
distance dmin. A generalization of this quantity is studied in
[1], which defines AF(n, a, b) as the maximum dimension of a
subspace in Fn that does not contain any vector in the annulus
{x ∈ Fn : a < ||x||`0 < b}. Let U be a (∆, D)-distinguishing
vector space, and let x be a nonzero vector of maximum
weight in U subject to ||x||`0 < D. If no such vector exists,
then dimU ≤ AF(n,D). Otherwise, there exists a vector
y ∈ Fn with ||y||`0 = 1 and ||y + x||`0 = ||x||`0 + 1 ≤ D.
Since y and x + y are in the same coset of U , we have

||x + y||`0 ≤ ∆2 ||y||`0︸ ︷︷ ︸
=1

=⇒ ||x||`0 ≤ b∆2c − 1.

Thus, dimU ≤ AF(n, b∆2c − 1, D). As AF(n,D) ≤
AF(n, a,D) for any a ≤ D, the above inequality applies to
any (∆, D)-distinguishing space U . Therefore we have

rank(M) ≥ n−AF(n, b∆2c − 1, D)

for any matrix M that can ∆-approximate d for every defective
vector of sparsity up to D in the linear operations model.
Define m?

F := n − AF(n, a, b). We have from [1, Proposition
1] that whenever 2a−2 ≤ b, m?

F(a, b, n) = m?
F(1, b, n−a+1).

The work in [1] is oriented towards finite fields, but their proof
is independent of the choice of field F, so in particular applies
also when F = R. Note that m?

F(1, b, n) is just the rank of
the parity check matrix of the largest dimension linear code
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on n coordinates with minimum distance b. Thus, as long as
D ≥ 2b∆2c − 4,

rank(M) ≥ m?
F(1, D, n− b∆2c+ 2).

If F is a finite field of size greater than or equal to n, or
F = R, we know that m?

F(1, D, n − b∆2c + 2) ≥ D − 1
by the Singleton bound. Since we can exactly identify the
set of defectives for d ≤ D in 2D queries using basic
techniques from compressed sensing, there is at most a factor
2 improvement possible.

For |F| = q < n, a stronger lower bound is possible
since in general the Singleton bound is not tight. From the
sphere-packing bound on AF(n − b∆2c + 2, 1, D), we have
that m?

Fq (1, D, n− b∆
2c+ 2) is lower bounded by⌊

D − 1

2

⌋
logq(n− b∆2c+ 2)−O(D logD)

= Ω
(
D log

n

D

)
,

as long as bD−1
2 c ≤

n
2 .

For an upper bound on the minimum possible rank of M
when |F| = q < n, recall that such a matrix must have the
property that in every coset of the nullspace, any two vectors
of weight less than or equal to D must differ in weight by
at most a ∆2 factor. As the difference of any two vectors in
the same coset lies in the nullspace, this condition is satisfied
if every nonzero vector in the nullspace has weight at least
2D + 1, so we have the following result.

Theorem 6. In the linear operations model, when |F| =

q < n, and D ≤ n(q−1)−q
2 , there exist matrices M that

can ∆-approximate the true number of defectives, d, for every
possible vector of defectives of weight at most D, with at most
nHq(

2D+1
n ) rows, where Hq is the q-ary entropy function,

Hq(x) := x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

Proof. We have

min
M

M ∆−approximates d

rank(M) ≤ min
M

∀x6=0∈kerM, ||x||`0>2D

rank(M)

= m?
Fq (1, 2D + 1, n) ≤ nHq

(
2D + 1

n

)
,

where the last inequality follows from the asymptotic Gilbert-
Varshamov bound, using the fact that 2D+1

n ≤ 1− 1
q .

Corollary 7. Under the conditions of the previous theo-
rem, there exist matrices M that can ∆-approximate d with
(2D + 1) logq

(
n

2D+1

)
+ O(D) = O(D log(n/D)) rows for

sufficiently large n.

The above result is asymptotically tight with the lower
bound given previously, so only improvements in the constant
factor are possible. For certain settings of parameters these
improvements follow easily from known results; for instance,
the existence of binary BCH codes with n−k ≤ D log2(n+1)
for certain values of n implies that when q = 2 the bound in
corollary 7 improves by about a factor of 2.
Remark: Adaptive Tests. In the case of linear measurements
over R, a simple trick yields a very efficient adaptive scheme

as well. First, suppose the entries of the vector x are nonneg-
ative. In this case, the result of a test is nonzero if and only if
some nonzero entry of x is included in the test. Then for the
purpose of determining sparsity, each test tells us as least as
much information as the corresponding test in the group testing
model, as we can simply threshold the real-valued test result to
1 if it is nonzero and 0 otherwise. Thus we can exploit existing
results for adaptive group testing sparsity approximation [11]
to obtain an estimate of the sparsity that is accurate with high
probability in as few as O(log log d) measurements. However,
if not all entries of the vector x are nonnegative, then there is
the additional complication that it is possible to observe a test
result of 0 even when a nonzero entry of x is included in the
test. This will happen exactly when the vector corresponding
to some test is orthogonal to x. It is easy to counteract this by
slightly perturbing each test vector, adding a small real-valued
random vector that is nonzero only on the support of the test
vector to each test. This ensures that the new test vector lies
in the space orthogonal to x with probability 0.
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