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Abstract—We use some simple techniques to derive a universal
alphabet-size dependent bound on the parameters of erasure-
correcting regenerating codes. It can be shown that the well-
known previous bounds are special cases of our more general
bound. In certain cases our bound leads to improvement over
prior results.

I. INTRODUCTION

When erasure codes are used for distributed storage systems,
repairing failed nodes with a minimal amount of bandwidth
is an important criterion that helps reduces network traffic
in the system. Motivated by the goal to reduce the network
traffic, the repair bandwidth problem for exact repair has been
formulated in [5], [18]. Codes that achieve the minimum
repair bandwidth are commonly termed regenerating codes.
Following the formulations of [5], [18], there has been much
interest in constructing regenerating codes and studying their
properties. The main goal of this paper is to study the impact
of size of the alphabet on regenerating codes.

The formulation of [5] involves the characterization of
the trade-off between the repair bandwidth and amount of
data to be stored. Code constructions corresponding to the
two extremal points of the trade-off are termed minimum
storage regenerating (MSR) codes and minimum bandwidth
regenerating (MBR) codes respectively. Optimal linear code
constructions for the MBR point are provided in [9], [10],
[12].

MSR codes are maximum distance separable codes with
the minimum possible repair bandwidth. Commonly studied
MSR codes are vector linear code constructions, where each
codeword symbol is interpreted as a vector. The length of the
vector corresponding to each symbol is frequently referred
to as the sub-packetization level of the code. Following the
result of [4] which showed the existence of MSR codes
using interference alignment, the sub-packetization required
for MSR code constructions has been a subject of significant
interest. If the length of the code n and the dimension of
the code k are given, then the sub-packetization level of
MSR code constructions of [16], [17] are expressions that are
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exponential in the dimension k1. Recently, code constructions
of [1], [3], [13] have shown that if the rate R of the code
and the dimension of the code k are fixed, then there exist
code constructions whose sub-packetization is polynomial in
the dimension k. Reference [7] provides a lower bound on the
sub-packetization level of vector linear MDS codes.

In contrast to previous works which mainly study the sub-
packetization level, we study the impact of the size of the
alphabet of the code in this paper. In Theorem 1, we provide
a bound on the minimum distance of a code in terms of
the length, dimension, the repair bandwidth, and the alphabet
size of the code. Our bound is information-theoretic, and
is therefore applicable for both linear and non-linear code
constructions. For a vector linear code, the alphabet size is a
product of the sub-packetization level and the field size. Thus,
unlike the works of [1], [3], [7], [13], our bound implicitly
shed light on the minimum field size required for a given sub-
packetization level, when a vector-linear code is used.

Our approach is similar to our previous work [2] that
developed an upper bound on the rate of locally recoverable
codes, which depended on the size of the alphabet. Like the
result of [2], we can use any bound on the minimum distance
of an erasure code, in terms of its length and dimension, to
obtain a bound on the minimum distance of a regenerating
code. The result of [2] matched previous bounds [6], [8] by
using the Singleton bound. Similarly, we show that our bounds
match the bounds of [5] at the MSR and MBR points by using
the Singleton bound on the minimum distance. We show a
comparison with the bounds of [5] and provide some new
insights in Section IV.

II. SYSTEM MODEL

For integers n, k, d, q, a q-ary (n, k, d) code (over an
alphabet of size q) consists of a set of codewords C ⊆
{0, 1, . . . , q − 1}n of cardinality |C| = qk such that the
Hamming distance between any two elements of C is at least
d. The parameters n, k, d are respectively referred to as the
length, the dimension, and the minimum distance of the code.

1If the rate of the code is smaller than 1/2, then code constructions that
have sub-packetization levels that are linear in k have been constructed in
[10], [14], [15].



Informally speaking, an (n, k, d) code C over an alpha-
bet of size qm,m ∈ Z+ has a repair bandwidth of β if
every erased symbol can be recovered from downloading β
elements from {0, 1, 2, . . . , q − 1} from each of the n − 1
other symbols. Formally, the repair bandwidth of an (n, k, d)
is β if, for every i, j ∈ {1, 2, . . . .n}, i 6= j there exist
functions gi,j : {0, 1, . . . , qm − 1} → {0, 1, . . . , qβ − 1} and
χi : {0, 1, . . . , qβ − 1}n−1 → {0, 1, 2, . . . , qm − 1} such that
for every codeword (x1, x2, . . . , xn) ∈ C, the following holds

xi = χi
(
gi,1(x1), gi,2(x2), . . . gi,i−1(xi−1), gi,i+1(xi+1),

gi,i+2(xi+2) . . . , gi,n(xn)
)
.

III. MAIN RESULT

Given parameters n, k, q, let

d
(q)
opt (n, k) = max{d : a q-ary (n, k, d) code exists },

i.e., the maximization is over all possible n-length codebooks
C with dimension k, over an alphabet of size q. We now state
our main result.

Theorem 1: An (n, k, d) code over an alphabet of size qm

and with repair bandwidth β satisfies

d ≤ min d
(qm−tβ)
opt

(
n− t, mk − t(n− 1)β + t(t− 1)β/2

m− tβ

)
where the minimization is over 0 ≤ t ≤ min{n− d,m/β}.

The proof of the above theorem requires the following
lemma.

Lemma 1: Assume, m ≥ β. If there exists an (n, k, d) code
over an alphabet of size qm with repair bandwidth β, then there
exists an (n− 1, mk−(n−1)β

m−β , d) code over an alphabet of size
qm−β with repair bandwidth β.

Proof: Consider an (n, k, d) code over an alphabet of size
qm with repair bandwidth β. We view each codeword symbol,
whose element comes from {0, 1, 2, . . . , qm − 1}, as a vector
of length m with entries from {0, 1, 2, . . . , q−1}. Without loss
of generality, we can assume that the first qm-ary symbol can
be recovered from the last β entries of each of the remaining
n− 1 vectors. More precisely, we can assume without loss of
generality that the function g1,j , j 6= 1 (defined in Section II)
simply projects the last β entries of jth symbol vector.

The codeword symbols of C are denoted as m length q-ary
vectors v1,v2, . . . ,vn. Let us denote the first m−β symbols
of these vectors as v1,v2, . . . ,vn and the last β symbols as
v1,v2, . . . ,vn. Note that v1 = χ1(v2, . . . ,vn).

We partition the qmk codewords (v1,v2, . . . ,vn) into
q(n−1)β partitions. For notational convenience, we index the
q(n−1)β partitions by the set I = {(w1,w2, . . . ,wn−1) :
∀wi ∈ {0, 1, . . . , q− 1}β , i ∈ {1, 2, . . . , n− 1}}. A codeword
(v1,v2, . . . ,vn) belongs to partition corresponding to vector
(w1,w2, . . . ,wn−1) ∈ I if and only if (v2,v3, . . . ,vn) is
equal to (w1,w2, . . . ,wn−1). By the pigeon-hole principle,
there is at least one element (w∗

1,w
∗
2, . . . ,w

∗
n−1) ∈ I whose

corresponding partition set P ⊂ C has qmk−(n−1)β codewords.

We use the codewords in partition set P to construct an
(n−1, mk−(n−1)β

m−β , d) code C1 over an alphabet of size qm−β .
The codeword C1 is constructed as follows.

C1 = {(v2, . . . ,vn) : (v1,v2, . . . ,vn) ∈ P}

Clearly C1 is a codebook with length n− 1 and dimension
at least mk−(n−1)β

m−β , over an alphabet of size qm−β . One thing
that remains to be shown is that the minimum distance of C1
is d. We show this next.

For any two codewords (v1,v2, . . . ,vn) and
(v∗

1,v
∗
2, . . . ,v

∗
n) in P we show that v1 = v∗

1. Because
the two codewords belong to the same partition P , we know
that

(v∗
2,v

∗
3, . . . ,v

∗
n) = (v2,v3, . . . ,vn). (1)

Because the code has repair bandwidth β, we know v1 =
χ1(v2, . . . ,vn) and v∗

1 = χ1(v
∗
2, . . . ,v

∗
n). Therefore, we infer

that v1 = v∗
1 . Now, because any two elements of P have a

distance of d and because all the elements of P have identical
entries in the first co-ordinate, the distance of any two elements
of P when restricted to the last (n − 1) co-ordinates is d.
Because of (1), we infer that any two codewords of C1 have
a distance of d.

It should also be noted that the repair bandwidth of C1 is
β. Indeed, the repair bandwidth of P is still β, and we can
shorten this code by puncturing the first coordinate which has
a fixed value. This completes the proof.

Now we prove Theorem 1 by using Lemma 1 recursively.

Proof of Theorem 1: Consider an (n, k, d) code C over an
alphabet of size qm with repair bandwidth β. Applying Lemma
1, we get a (n − 1, mk−(n−1)β

m−β , d) code C1 over an alphabet
of size qm−β with repair bandwidth β. Now, applying Lemma
1 again to code C1, we get a (n− 2, mk−2(n−1)β+β

m−2β , d) code
C2 over an alphabet of size qm−2β with repair bandiwdth β.
Proceeding similarly, applying Lemma 1 repeatedly, t times,
we get a sequence of codes C3, C4, . . . , Ct. The code Ct has
length n−t, dimension mk−t(n−1)β+t(t−1)β/2

m−tβ , distance d, and
uses an alphabet of size qm−tβ . The minimum distance d of
code Ct has to satisfy

d ≤ dq
m−tβ

opt

(
n− t, mk − t(n− 1)β + t(t− 1)β/2

m− tβ

)
.

This completes the proof.

IV. DISCUSSION

We discuss some implications of Theorem 1 here. In par-
ticular, we argue that if we let the alphabet size grow large,
our bound matches the well known bounds of [5].

For large alphabets, Singleton bound is the tight limit for
distance of codes. Applying the Singleton bound [11, p. 94]
to Theorem 1, we get

d ≤ min
t

(
n− t−

mk − t(n− 1)β + t(t−1)β
2

m− tβ

)
+ 1. (2)

where the minimization is carried over the constraints 0 ≤ t ≤
n− d and 0 ≤ m− tβ < mk − t(n− 1)β + t(t− 1)β/2.



Simple rearrangement shows that the bound is equivalent
to,

m ≤ min
t

tβ(d− t
2 −

1
2 )

t+ d− (n− k + 1)
. (3)

We can use (2) and (3) depending on the set of parameters
given to us.

We use the above to compare our bound with Dimakis
et al.’s [5] and, in parallel generate insights into the role of
alphabet size.

A. The Minimum Storage Regenerating (MSR) point

• If we set t = 1 in Eq. (2) we get,

d ≤ n− 1− mk − (n− 1)β

m− β
+ 1

⇒ β ≥ m(k − (n− d))
d− 1

. (4)

This is indeed Eq. (5) from [5] when we set d = n−k+
1, i.e., when we start with an MDS (maximum distance
separable) code.

• We can demonstrate the usefulness of our bound by
applying it in conjunction with the MDS conjecture [11,
p. 342]. We claim that there does not exist an MDS code
with parameters n = 14, k = 10 over q = 2m,m = 4,
achieving the bound of [5] on the repair bandwidth. The
bound of [5] or Eq. (4) says that, for the aforementioned
parameters β ≥ 1. Suppose such a code exists. This
implies that, using Lemma 1, a code exists with length
equal to 13, dimension equal to mk−(n−1)β

m−β = 9 and
distance equal to n − k + 1 = 5 over an alphabet of
size 24−1 = 23. Since the alphabet size is smaller than
the dimension, this code does not exist as per the MDS
conjecture, which leads to a contradiction. Note that, such
conclusion was not possible using only (4).

• More generally, if we set β = m
n−k , then we must need

an (n−1, k−1, d) code over alphabet qm−β , with repair
bandwidth of m

n−k symbols per node.
Applying the MDS conjecture, we get qm(1− 1

n−k ) ≥ n−
2, which is a non-trivial, albeit small, improvement of the
standard setting where we started with qm ≥ n− 1.

B. The Minimum Bandwidth Regenerating (MBR) point

In this section, we show that our bound is tight at the MBR
point. In particular, if we set t = n − d + 1, then we know
that the codebook obtained from removing t symbols should
have at most 1 codeword. This is because, on removing n −
d + 1 symbols, if we had 2 codewords, then we would have
two codewords in the original codebook with distance d− 1.
Therefore, we get

mk − (n− d+ 1)(n− 1)β + (n− d+ 1)(n− d)β/2 ≤ 0

⇒ β ≥ 2mk

(n− d+ 1)(n+ d− 2)
,

which matches the repair bandwidth bound of the MBR point
of Dimakis et. al [5]. For a hypothetical code that satisfies the
above bound with equality, we get, from the Singleton bound

d ≤ (n− t)−
mk − t(n− 1)β∗ + t(t−1)β∗

2

m− tβ∗ + 1

for all t ≤ n− d, where β∗ = 2mk
(n−d+1)(n+d−2) .
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