
Communication Efficient Distributed Approximate
Newton Method

Avishek Ghosh∗, Raj Kumar Maity†, Arya Mazumdar†, Kannan Ramchandran∗
∗Department of Electrical Engineering and Computer Sciences, UC Berkeley,

avishek_ghosh@berkeley.edu, kannanr@eecs.berkeley.edu
†College of Information and Computer Sciences, UMass Amherst,

{rajkmaity, arya}@cs.umass.edu.

Abstract—In this paper, we develop a communication efficient
second order distributed Newton-type algorithm. For communi-
cation efficiency, we consider a generic class of δ-approximate
compressors (Karimireddy et al., 2019), which includes sign-
based compression and top-k sparsification. We provide three
potential settings where compression can be employed; and
provide rate of convergence for smooth objectives. We show that,
in the regime where δ is constant, our theoretical convergence
rate matches that of a state-of-the-art distributed second order
algorithm called DINGO (Crane and Roosta, 2019). This implies
that we get the compression for free in this regime. The full
paper can be found at https://tinyurl.com/ujnpt4c.

I. INTRODUCTION

The presence of parallel and distributed computation in
machine learning is universal now with the ever-growing
size of training data in modern day applications. Availability
of training data in a distributed fashion is a commonly
used framework for data processing. In applications like
Federated Learning [1], data is inherently distributed among
users’ personal devices. In a distributed setup, usually the
computation (training, processing etc.) happens locally in the
worker machines, and the local results are communicated to a
central machine (parameter server). The central machine then
aggregates them and updates the model parameters. With more
worker machines, the burden of computation is alleviated,
but the gain in speed-up often gets bottle-necked by the
high communication overhead between the workers and the
central machine. In recent years, a significant amount of effort
and progress has been made in reducing the communication
overhead in first order optimization by sparsification and
quantization of gradients [2]–[9].

An alternative way to reduce the number of iterations
(and hence the communication cost) between the workers
and the central machine is to use second order optimization
algorithms; which are known to converge much faster than
their first order counterparts. Indeed, a handful of algorithms
has been developed using this philosophy, such as DANE [10],
DISCO [11], GIANT [12], DINGO [13], Newton-MR [14],
INEXACTDANE and AIDE [15]. However, the question of
whether it is possible to employ quantization/sparsification
techniques in second order algorithms to further cut down
communication cost remains unanswered.

In this paper, we answer this aforementioned question
affirmatively. To the best of our knowledge, this is the
first work to address the problem of high communication
overhead in distributed second order optimization. Here, we

use a δ-approximate compressor (see Definition 1) to provide
communication efficiency in a recently proposed second order
optimization algorithm DINGO [13]. We show three different
settings where we apply compression to reduce communication
overhead in each iteration.

In each iteration of DINGO, the worker machines first
communicate the local gradients to the central machine. The
central machine aggregates the local gradients and broadcasts
the global gradient to the worker machines. The worker
machines then compute the local Hessians, obtain the (pseudo)
inverse, compute the product of the inverse Hessian and the
global gradient and send this vector to the central machine.
Observe that, there are multiple places where compression can
be employed. Such as:

1) One round compression: Every worker machine sends the
uncompressed gradients to the central machine. However,
while sending the product of the inverse (local) Hessian
and gradient, it uses a δ-approximate compressor, and
sends the compressed vector. Hence, only one round of
compression is employed in each iteration.

2) Two round compression: Here every worker compresses
their local gradients and sends it to the central machine.
Furthermore, while sending the product of local inverse
Hessian and gradient, it also compresses that vector. So,
each worker machine uses two rounds of compression
(both with δ-approximate compressor) in each iteration.

3) One round communication: In this setting, the worker
machines communicate to the central machine only once
in each iteration. Each worker machine computes the local
gradient and the (pseudo) inverse of the local Hessian, and
thereby obtains their product. Now, using a δ-approximate
compressor, it compresses this vector and communicate
to the central machine.

We provide a careful analysis of the above settings such that
we can track the effect of compression on the convergence
rate. For setting 1, the conditions on the algorithm remain
almost the same as that of DINGO with availability of the
gradient but differs in a ‘dot-product’ condition [13] as the
second round of the communication (Hessian-gradient product)
is compressed. For setting 2, we provide analysis with both
rounds of communication being compressed while adhering to
the same protocol of the underlying second order algorithm.

Setting 3 achieves a very low communication cost which
is the primary goal of this paper. We omit the discussion of

2557978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

setting 3 in this submission, but remark that its theoretical
analysis currently works under a strong assumption. Analysis
with a weaker condition for one round communication is a
challenging problem in setting 3, and can be thought of as an
exciting future work.

Summary of Contributions: We propose and analyze
a communication-efficient Newton-type algorithm. We use
DINGO [13] as the baseline second order algorithm and
make it communication-efficient by employing δ-approximate
compressors. As mentioned, we handle one-round and two-
round compression (settings 1 and 2) both theoretically and
experimentally. We show that with proper choice of the step-
size and hyper-parameters of the algorithm, we can achieve
the same rate of convergence as DINGO. We prove that
the gradient norm decreases exponentially over iterations of
the algorithm. We also validate our results for regularized
logistic regression for binary classification on real datasets [16].
Also, we emphasize here that when δ = 1 (no compression),
we recover the same convergence rate of DINGO [13].
Furthermore, in the regime where the compression factor δ is
constant (Θ(1)), with a careful choice of learning rate, our rate
of convergence matches (order-wise) to that of DINGO. So we
get compression for free in this parameter regime. Note that,
as illustrated in [17], δ = Θ(1) is usually observed in most
practical applications. We have omitted proofs of theorems in
this submission, which can be found in the full version.
A. Related Work

Distributed Second Order Optimization: In the past few
years, several distributed second order algorithms such as
DANE [10], INEXACTDANE and AIDE [15], DISCO [11]
and GIANT [12] have been proposed and analyzed. These
algorithms requires convexity of the objective function (in
addition to 2nd order oracle access. Very recently, [14] and
[13] alleviate these disadvantages. In [18], a numerical linear
algebra based sketching method has been developed to compute
the approximate Hessian. In this work, we deal with non-
convex objective and emphasize communication efficiency.

Gradient Compression: In the works [2]–[4], [7], [8],
[19], communication efficiency is achieved by coordinate-wise
quantization of gradients and in [9], vector quantization of
gradients has been studied. Recently, gradient sparsification
where only top-k component of the d-dimensional gradient
vector is communicated, have been proposed in [5], [6], [20],
[21]. In [17], the authors exploit the ‘error in compression’ as
feedback to improve convergence of first order optimization.
Very recently, Byzantine resilient communication efficient
method have been analyzed in [22], [23]. Note that all the
compression techniques discussed here are only applicable for
first order optimization. To the best of our knowledge, this is
the first work to propose and analyze compression schemes
for second order optimization.

II. BACKGROUND AND PROBLEM STATEMENT

Our objective is to solve the following problem

min
w∈Rd

f(w) = min
w∈Rd

1

m

m∑
i=1

fi(w), (1)

in a distributed environment with m worker machines, where
each machine has local access to the ith loss function fi.

We assume that the worker machines can communicate to
the central machine, but can not interact among themselves.
This is a commonly used distributed setup particularly in
applications like Federated Learning, large scale neural net
training etc. We assume that ith worker machine has n i.i.d
data points {xi,j}nj=1, and hence fi(w) = 1

n

∑n
j=1 l(w;xi,j),

where l(w;xi,j) is the loss associated with jth data point
xi,j . Classically, we use the second order Newton method for
convex optimization, and the update is given by,

wt+1 = wt + αtpt where pt = −[∇2f(wt)]
−1∇f(wt)

(2)

where αt is the step size. Here we provide a communication
efficient Newton type algorithm in distributed setup. We use
the recently proposed and popular second order distributed
optimization algorithm called DINGO [13]. Here we address
the setting 1 and 2 as presented in Section I. Next, we define
δ-approximate compressor (as in [17]).

Definition 1 (δ-approximate compressor). An operator Q :
Rd → Rd is called an δ-approximate compressor on a set
S ⊂ Rd if ‖Q(x) − x‖2 ≤ (1 − δ)‖x‖2 for all x ∈ S and
δ ∈ [0, 1] is the compression factor. Furthermore, a randomized
operator Q is δ-approximate compressor if E‖Q(x)− x‖2 ≤
(1− δ)‖x‖2 for all x ∈ S.

We list a few example of δ-approximate compressor:
1) quantized SGD with `1 norm [17], Q(x) = ‖x‖1

d sign(x),
which is a ‖x‖21

d‖x‖2 -approximate compressor. Here,
sign(x) ∈ {0,±1}d is the coordinate-wise signs of the
vector x. We choose this compressor for the experiments.

2) topk operator, which selects k coordinates with largest
absolute value; for 1 ≤ k ≤ d, (Q(x))i = (x)π(i) if
i ≤ k, and 0 otherwise, where π is a permutation of [d]
with (|x|)π(i) ≥ (|x|)π(i+1) for i ∈ [d − 1]. This is a
k/d-approximate compressor.

3) k-PCA that uses top k eigenvectors to approximate a
matrix X [3].

Notation: Throughout the paper, we use bold upper
case H for matrices and lowercase w for vector. By 〈.〉,
we denote Euclidean dot-product. For a vector and a matrix
‖.‖ will denote the l2 and spectral norm respectively. The
Moore-Penrose Inverse of any matrix H is denoted by
H†. For vectors x,y ∈ Rd by [x,y] we denote the line
{(1 − t)x + ty|0 ≤ t ≤ 1}. Also for the purpose of our
algorithm we use the following definitions:

gi,t ≡ ∇fi(wt) Hi,t ≡ ∇2fi(wt)

gt ≡ ∇f(wt) Ht ≡ ∇2f(wt),

H̃i,t ≡
[
Hi,t

φI

]
∈ R2d×d g̃i,t ≡

[
gi,t
0

]
∈ R2d, (3)

where φ > 0 and 0 ∈ Rd is the all zero vector.

We conclude this section with the set of assumptions
required for the analysis presented in the subsequent sections.

Assumption 1 (Twice Differentiablity). For all i ∈ [m], the
local loss functions fi are twice differentiable.

2558

Assumption 2 (Moral Smoothness). For all iteration t, there
exists a constant L > 0 such that, for all w ∈ [wt,wt + pt],
where pt is the update direction we have

‖∇2f(w)∇f(w)−∇2f(wt)∇f(wt)‖ ≤ L‖w −wt‖.

Note that this is a weaker assumption than the Lipschitz-
ness of both gradient and Hessian, typically used in related
literature [13], [14]. The assumption requires the gradient
and Hessian to be Lipschitz continuous on the piece-wise
linear path of the update direction. In [13], [14], more detailed
discussion on this can be found. As shown in [13], we have
the following useful lemma.

Lemma 1. Let x, z ∈ Rd, β ∈ (0,∞), L ∈ [0,∞) and f :
Rd → R be differentiable and suppose y ∈ [x, z]. If ‖∇f(y)−
∇f(x)‖ ≤ L‖y − x‖β , then,

f(y) ≤ f(x) + 〈y − x,∇f(x)〉+
L

1 + β
‖y − x‖1+β .

We use the fact ∇(1
2‖∇f(w)‖2) = ∇2f(w)∇f(w), and

Assumptions 1, 2 in Lemma 1 with β = 1

‖∇f(w)‖2 ≤ ‖∇f(wt)‖2 + 〈w −wt,∇2f(wt)∇f(wt)〉
+ L‖w −wt‖2, (4)

for all w ∈ [wt,wt + pt] and all iteration t.

Assumption 3. For all i ∈ [m] there exists constants γi ∈
(0,∞) such that ‖H†i,t‖ ≤ γi.

Assumption 4. For all i ∈ [m] there exists constants τi ∈
(0,∞) such that ‖Hi,t‖ ≤ τi.

Assumptions 3,4 characterize the spectrum of the Hessian
and its pseudo-inverse. Assumption 4 implies that each local
Hessian has largest singular value uniformly bounded for all
iterates. Also, Assumption 3 deals with the smallest singular
value of the Hessian. If the function is strongly convex, then the
smallest singular value of the Hessian is always positive. But
in more general sense, the Hessian is always positive definite
in its own range space [14]. In the following assumption, we
state the more general form of the Assumption 3.

Assumption 5. There exists a constant β ∈ (0,∞) such that
for all iteration t we have ‖Htp‖ ≥ β‖p‖ where p is in the
range space of Ht i,e p ∈ R(Ht).

Also an assumption similar to below appear in [13].

Assumption 6. There exists a constant ηi such that
‖(H̃T

i,t)
†Q(Htgt)‖ ≥ ηi‖gt‖.

Observe that the assumption is dependent on the compres-
sion Q. In Lemma 2, we justify this assumption by providing
a proper value to ηi.

The next assumption is basically a restatement of Pythagoras
theorem, the proof of which can be found in [14].

Assumption 7. There exists a constant ν ∈ (0, 1) such that

‖(U⊥w)T∇f(w)‖2 ≤ 1− ν
ν
‖(UT

w∇f(w)‖2,

for all w ∈ Rd, where U and U⊥ are the orthonormal basis
for the range space of Hessian and its orthogonal complement.

Using Assumption 7, we infer that ‖∇f(w)‖2 ≤
1
ν ‖(U

T
w∇f(w)‖2 for all w ∈ Rd.

Lemma 2. Under the Assumptions 4, 5 and 7, Assumption 6
holds with

ηi = β(1−
√

1− δ)(ν

τ2i + φ2
)1/2,

where φ is described in 3 and δ is the compression factor as
defined in the definition 1

III. ONE ROUND COMPRESSION
In this section, we propose and analyze an algorithm for

the communication efficient second order optimization. In
particular, we obtain a contraction on the gradient norm. It is
formally written in Algorithm 1. The algorithm works mainly
on the estimation of the gradient in the first round and the
estimation of the update direction on the next. In this section,
we assume that the worker machines do not compress the
local gradients in the first round (setting 1 of Section I), i.e.,
Q1(x) = x for all x, in Algorithm 1. So, the central machine
computes the full gradient gt = 1

m

∑m
i=1 gi,t, after receiving

the local gradients. Next the central machine broadcasts the
gradient gt and each worker machine computes the following
(compressed) vectors Q(Hi,tgt),Q(H†i,tgt),Q(H̃†i,tgt). The
central machine computes Q(Htgt) = 1

m

∑m
i=1Q(Hi,tgt).

Update direction pt and step-size α are computed based on
these vectors. The iterated update wt+1 = wt + αpt is then
performed based on the three cases (Algorithm 1). The constant
G̃ in the algorithm is θ‖gt‖2. We now give results on the
three cases of the algorithm. For shorthand, we define γ =
1
m

∑m
i=1 γi and τ = 1

m

∑m
i=1 τi, which are used in the results

of this and subsequent sections.
Case 1: If

〈 1

m

m∑
i=1

Q(H†i,tgt),Q(Htgt)〉 ≥ θ‖gt‖2 (5)

then the update is pt = 1
m

∑m
i=1 pi,t where pi,t =

−Q(H†i,tgt) and set α ≤ 1
Lγ(1+

√
1−δ)2 [θ(1−ρ)γ − (1 − δ +

√
1− δ)τ]. We provide the following exponential rate of

convergence to a critical point of the loss function f(.).

Theorem 1. Under the Assumptions 1,2,3 and 4, if we run
Algorithm 1 we have

‖gt+1‖2 ≤ (1− 2ραθ)‖gt‖2. (6)

Remark 1. Note that we achieve an exponential convergence
even for non-convex functions. When δ is a constant, our algo-
rithm enjoys the same order of convergence with compression
as in [17]. So, we get the compression for free.

Remark 2. Case 1 is often satisfied if we choose the value of
the hyper-parameter θ ∼ γτ and a constant δ. Experimentally
we find that it to be the most frequent case.

Case 2: If

〈 1

m

m∑
i=1

Q(H̃†i,tg̃t),Q(Htgt)〉 ≥ θ‖gt‖2 (7)

2559

then the update is pt = 1
m

∑m
i=1 pi,t where pi,t =

−Q(H̃†i,tg̃t) and set α ≤ 2φ2

L((1+
√
1−δ)2 [θ(1 − ρ) − (1 − δ +

√
1− δ) τφ]. Here, (from the construction) we assume

‖H̃†i,t‖ ≤ 1/φ. (8)

Theorem 2. Under the Assumptions 1,2, 4 and condition (8),
if we run Algorithm 1 we have

‖gt+1‖2 ≤ (1− 2ραθ)‖gt‖2. (9)

Remark 3. We resort to case 2 if the condition for case 1 is
not satisfied. We observe the similar exponential convergence.
The convergence rate here depends on the choice of φ which
is the spectral upper bound of H̃†. In our experiments, we did
not encounter this case.

Case 3: When the conditions for case 1 and case 2 are
not satisfied, the central machine broadcasts Q(Htgt) and
solve the following optimization problem locally:

argminp‖H̃i,tp + g̃t‖2

such that 〈p,Q(Htgt)〉 ≤ −θ‖gt‖2. (10)

Proposition 1. The solution to the optimization problem (10)
is

p̂i,t = −H̃†i,tg̃t − λi,t(H̃
T
i,tH̃i,t)

−1Q(Htgt)

where λi,t =
θ‖gt‖2 − (Q(Htgt))

T H̃†i,tg̃t

(Q(Htgt))T (H̃T
i,tH̃i,t)−1Q(Htgt)

.

In Algorithm 1, we use pi,t (to get the direction pt), which
is defined as: pi,t = Q(p̂i,t) and set α ≤ 2

L(1+
√
1−δ)2c2 (θ(1−

ρ)− (2
√

1− δcτ)), where c ≡ 1
m

∑m
i=1(1

φ (2 + θ
ηi

)).

Theorem 3. Suppose Assumptions 1,6 and Lemma 2 hold.
Then, Algorithm 1 yields

‖gt+1‖2 ≤ (1− 2ραθ)‖gt‖2. (11)

Remark 4. Note that, although we retain the same exponential
rate of convergence, case 3 is not ideal both in terms of
convergence rate and communication as it requires one more
round of communication between the central and the worker
machines. Fortunately, this case occurs rarely in practical
situation (as we observe experimentally in Section V).

So far, we let the worker machines send uncompressed local
gradients and only compress the second round. Hence, with one
round compression we do not gain savings in communication
order-wise. In the subsequent section, we remove this issue by
employing compression in both gradient and Hessian based
computation.

IV. TWO ROUND COMPRESSION

Here, we use compression in both rounds of communication
with the central machine. In particular, the worker machines
use a δ-approximate compressor to compress the gradient.
Hence, each worker machine sends Q1(gi,t) to the central
machine (Algorithm 1). The central machine then computes
ĝt = 1

m

∑m
i=1Q1(gi,t) and broadcasts it. Next, the updates are

done similar to the one round compression. Here, for simplicity

Algorithm 1

Input: Initial iterate w0 ∈ Rd , gradient tolerance ξ > 0,
Maximum iteration T , parameter ρ ∈ [0, 1], parameter θ > 0
and regularization parameter φ > 0 and Compressors Q,Q1

for t = 0, 1, . . . , T − 1 do
All worker i ∈ [m] locally compute and compress
Q1(gi,t) and communicate it to the central server
Central machine compute full gradient
ĝt = 1

m

∑m
i=1Q1(gi,t)

if ‖ĝt‖ < ξ then
return wt

else
The central machine broadcasts ĝt and in parallel
each worker computes using compression scheme
Q(Hi,tĝt),Q(H†i,tĝt),Q(H̃†i,tĝt)
Central machine computes Q(Htĝt) =
1
m

∑m
i=1Q(Hi,tĝt),Q(H†i,tĝt), 1

m

∑m
i=1Q(H†i,tĝt)

and 1
m

∑m
i=1Q(H̃†i,tg̃t)

if (Case 1) 〈 1m
∑m
i=1Q(H†i,tĝt),Q(Htĝt)〉 ≥ G̃ then

pt = 1
m

∑m
i=1 pi,t with pi,t = −Q(H†i,tĝt)

else if (Case 2) 〈 1m
∑m
i=1Q(H̃†i,tg̃t),Q(Htĝt)〉 ≥ G̃

then
pt = 1

m

∑m
i=1 pi,t with pi,t = −Q(H̃†i,tg̃t)

else
(Case 3) The central machine broadcasts Q(Htĝt)
and all the worker solve in parallel

pi,t = Q(−H̃†i,tg̃t − λi,t(H̃
T
i,tH̃i,t)

−1Q(Htĝt))

where λi,t =
θ‖ĝt‖2 − (Q(Htĝt))

T H̃†i,tg̃t

(Q(Htĝt))T (H̃T
i,tH̃i,t)−1Q(Htĝt)

Compress and send pi,t. The central machine com-
putes pt = 1

m

∑m
i=1 pi,t.

end if
The central machine sets the value of α according to
text and updates wt+1 = wt + αpt

end if
end for

we choose the same compression factor δ for both rounds, i.e.,
Q1 = Q. Also, we choose G̃ = θ 1

m

∑m
i=1 ‖Q(gi,t)‖2. Similar

to Section III, we analyze case by case basis.

Case 1: If

〈 1

m

m∑
i=1

Q(H†i,tĝt),Q(Htĝt)〉 ≥ θ
1

m

m∑
i=1

‖Q(gi,t)‖2 (12)

then the update is pt = 1
m

∑m
i=1 pi,t where pi,t =

−Q(H†i,tĝt) and set α ≤ 2
αLγ2(1+

√
1−δ)2 ×

(θ(1− ρ)−
√

1− δ(1 +
√

1− δ)γτ(1−
√
2−δ

1−
√
1−δ)).

Theorem 4. Under Assumptions 1,2,3 and 4, if we run
Algorithm 1, we obtain

‖gt+1‖2 ≤ (1− 2ραθ(1−
√

1− δ)2)‖gt‖2. (13)

Remark 5. Compared to the case 1 of one round compression
(Theorem 1), the convergence rate here suffers due to the

2560

((a)) a5a ((b)) w1a ((c)) mushroom

Fig. 1: Comparison of the convergence of DINGO and one and two round compression methods in terms of ‖gt‖ (gradient
norm) of regularized logistic regression for binary classification data.

compressed gradient information. But the exponential decay
still retains. For compression factor δ = Θ(1) (constant), we
do not lose order-wise performance compared to DINGO.

Remark 6. Remarkably, the communication cost here is ex-
tremely low as compared the one round compression (as we see
in experiments as well). Here both rounds of communication
from workers to the central machine are compressed.

Case 2: If

〈 1

m

m∑
i=1

Q(H̃†i,tg̃t),Q(Htĝt)〉 ≥ θ
1

m

m∑
i=1

‖Q(gi,t)‖2 (14)

then the update is pt = 1
m

∑m
i=1 pi,t where pi,t =

−Q(H̃†i,tg̃t) and set α ≤ 2φ2

αL(1+
√
1−δ)2 ×

(θ(1− ρ)−
√

1− δ(1 +
√

1− δ) τφ (1−
√
2−δ

1−
√
1−δ)).

Theorem 5. Under the assumption 1,2, 4 and equation (8),
if we run Algorithm, 1 we obtain

‖gt+1‖2 ≤ (1− 2ραθ(1−
√

1− δ)2)‖gt‖2. (15)

Remark 7. Similar to the situation of one round compression,
we do not encounter this case in simulation (Section V).
The study and analysis of this case is mainly of theoretical
importance.

Case 3: Note that, since we consider compressed gradient
along with compression local Hessian gradient product, acquir-
ing the required theoretical guarantee seems quite challenging.
Hence we fall back to the one round compression scenario. The
local gradients are communicated without any compression and
the follow the update rule of Case 3 of one round compression.
The convergence result of Theorem 3 holds here too.

Remark 8. In Section V, we implement this setting in
experiments and observe that this case never happens. Hence,
case 3 in not a practical deterrent to the convergence of
Algorithm 1 with two round compression.

V. EXPERIMENTAL RESULT

In this section we provide experimental validation of
Algorithm 1. For compression we choose the following
scheme: for any given vector x ∈ Rd the compressor outputs
Q(x) = ‖x‖1

d sign(x) where sign(x) is the quantized vector
and ‖x‖1d is the scaling factor.

We consider regularized logistic regression for binary
classification defined as

min
w∈Rd

1

n
log(1 + exp(−yixTi w)) +

1

2n
‖w‖2 (16)

where {xi}ni=1 ∈ Rd are data and {yi}ni=1 ∈ {−1,+1} are
the corresponding labels. We choose a5a (number of training
data, n = 6414 , dimension d = 123), mushroom (training
data, n = 8124, dimension d = 112) and w1a (training data
n = 2477, dimension d = 300), binary classification datasets
from UCI repository [16] . We simulate the distributed set up
by partitioning the data into 10 different worker machines. In
Figure 1, we plot the norm of gradient (‖gt‖) to validate the
optimization method described in the theoretical analysis. We
choose θ = 0.01 as defined in Algorithm 1. With this choice
of the hyper-parameter, we find that for all the algorithms only
case 1 occurs in all the iterations.

Figure 1 shows that even with compression, Algorithm 1
converges. We observe that with a decrease in communication
cost, the convergence gets slower. DINGO, which has no
compression (δ = 1) shows the fastest convergence and two
round compression (with least communication cost) shows the
slowest rate. One round compression is in between them in
terms of communication and convergence rate.

We also compare the performance of Algorithm 1 (two
round compression) with the compressed first order algorithm
of [23] with identical learning rates. A threshold of 0.02 on the
gradient norm is set as stopping criterion. For the mushroom
data [16], we observe that Algorithm 1 communicates a total
of 576 bits per machine, whereas [23, Algorithm 1] requires
1008 bits. Hence, a total savings of 432×m (m: number of
machines) or a savings of 43% in bits is achieved. However,
for Algorithm 1, the computation complexity at local machines
are more than that of first order algorithm. This can be seen
as a complexity communication trade-off.

VI. CONCLUSION AND FUTURE WORK
In this work, we address the problem of communication

efficiency in distributed second order optimization methods
for the first time. We provide algorithms for three different
settings that we also analyze and validate with experimental
results. The most challenging future work would be to perform
a theoretical analysis of the one round communication setting
(setting 3 in Section I) under reasonable assumptions.

2561

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[2] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed
mean estimation with limited communication,” in Proceedings of the
34th International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 3329–3337.

[3] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and S. Wright,
“Atomo: Communication-efficient learning via atomic sparsification,” in
Advances in Neural Information Processing Systems, 2018, pp. 9850–
9861.

[4] D. Alistarh, D. Grubic, J. Liu, R. Tomioka, and M. Vojnovic,
“Communication-efficient stochastic gradient descent, with applications
to neural networks,” 2017.

[5] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, 2018, pp. 5973–
5983.

[6] J. Acharya, C. De Sa, D. J. Foster, and K. Sridharan, “Distributed learning
with sublinear communication,” arXiv preprint arXiv:1902.11259, 2019.

[7] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signsgd: Compressed optimisation for non-convex problems,” arXiv
preprint arXiv:1802.04434, 2018.

[8] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, 2017, pp. 1709–
1720.

[9] V. Gandikota, R. K. Maity, and A. Mazumdar, “vqsgd: Vector quantized
stochastic gradient descent,” arXiv preprint arXiv:1911.07971, 2019.

[10] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient dis-
tributed optimization using an approximate newton-type method,” in
International conference on machine learning, 2014, pp. 1000–1008.

[11] Y. Zhang and X. Lin, “Disco: Distributed optimization for self-concordant
empirical loss,” in International conference on machine learning, 2015,
pp. 362–370.

[12] S. Wang, F. Roosta-Khorasani, P. Xu, and M. W. Mahoney, “Giant:
Globally improved approximate newton method for distributed optimiza-
tion,” in Advances in Neural Information Processing Systems, 2018, pp.
2332–2342.

[13] R. Crane and F. Roosta, “Dingo: Distributed Newton-type method
for gradient-norm optimization,” in Advances in Neural Information
Processing Systems, 2019.

[14] F. Roosta, Y. Liu, P. Xu, and M. W. Mahoney, “Newton-mr:
Newton’s method without smoothness or convexity,” arXiv preprint
arXiv:1810.00303, 2018.

[15] S. J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, and A. Smola,
“Aide: Fast and communication efficient distributed optimization,” arXiv
preprint arXiv:1608.06879, 2016.

[16] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[17] S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes signsgd and other gradient compression schemes,” in International
Conference on Machine Learning, 2019, pp. 3252–3261.

[18] V. Gupta, S. Kadhe, T. Courtade, M. W. Mahoney, and K. Ramchandran,
“Oversketched newton: Fast convex optimization for serverless systems,”
arXiv preprint arXiv:1903.08857, 2019.

[19] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in neural information processing systems, 2017, pp. 1509–
1519.

[20] N. Ivkin, D. Rothchild, E. Ullah, V. Braverman, I. Stoica, and R. Arora,
“Communication-efficient distributed sgd with sketching,” arXiv preprint
arXiv:1903.04488, 2019.

[21] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with memory,”
in Advances in Neural Information Processing Systems, 2018, pp. 4447–
4458.

[22] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar, “signsgd
with majority vote is communication efficient and byzantine fault
tolerant,” arXiv preprint arXiv:1810.05291, 2018.

[23] A. Ghosh, R. K. Maity, S. Kadhe, A. Mazumdar, and K. Ramchandran,
“Communication-efficient and byzantine-robust distributed learning,”
arXiv preprint arXiv:1911.09721, 2019.

2562

