
Achievable Schemes and Limits for Local Recovery
on a Graph

Arya Mazumdar
Department of ECE

University of Minnesota– Twin Cities
Minneapolis, MN 55455
email: arya@umn.edu

Abstract—Recently, a graph-theoretic model for a single-
failure-recoverable distributed storage system was proposed.
Unlike the usual local recovery model of codes for distributed
storage, this model accounts for the fact that each server or
storage node in a network is connectible to only some, and not all
other, nodes. Here we provide bounds and constructive schemes
for data storage in such networks. We also impose an additional
requirement on the codes for such model - a minimum distance
guarantee. The model is further generalized for multiple node
failures and cooperative repairs.

I. INTRODUCTION

In a locally repairable code, introduced in [11], any single
symbol of a codeword can be recovered from a fixed number
of other symbols. Local repairability is a desirable property
for application in distributed storage. If each symbol of an
encoded message is stored at a different node of a storage-
network, then a single node failure can be quickly repaired by
accessing only few other nodes.

The central result of [11] and subsequent works is that for
any code of length n, dimension k and minimum distance d,

d ≤ n− k−
⌈k
r

⌉
+ 2, (1)

where r is such that any single coordinate can be recovered
from at most r other coordinates.

One particular generalization of the local repair property,
that considers the topology of the network of distributed
storage system appears in [13] (and also in [18], but we will
adhere to the notations of [13]). In the model of [13], the
architecture of the storage system is fixed and the network of
storage is given by a graph. The servers are represented by the
vertices of a graph, and two servers are connected by an edge
if it is easier to establish up-or-down link between them, for
reasons such as physical locations of the servers, architecture
of the distributed system or homogeneity of softwares, etc.
It is reasonable to assume that the storage-graph is directed,
because there may be varying difficulties in establishing an up
or down link between two servers. Under this model, the local
recovery or repair condition is imposed in the following way:
the content of any failed server must be reconstructible from
the neighboring servers on the storage graph.

Assuming the above model, the main quantity of interest is
the amount of information that can be stored in the graph or the
storage capacity of the graph. Finding this capacity exactly,

as well as to construct explicit schemes that achieve this
capacity, are both computationally hard problems for arbitrary
graphs. However, here we show that good approximation
schemes are possible – and for some special classes of graphs
we can even compute this capacity exactly with constructive
schemes. In particular, for any undirected graph, the storage
capacity is sandwiched between the maximum matching and
the minimum vertex cover, two quantities within a factor of
two of each other (see, Section II-A). Similar statement, albeit
concerning different properties, is possible for directed graphs
(see, Section II-B).

The local repairability property on this model of storage can
be extended to several directions. One may ask for protection
against catastrophic failures, and therefore also impose a
minimum distance condition on codes, which is a common
fixture of the local recovery literature. In this scenario, we
obtain a general bound that include previous results such as
Eq. (1) as special cases (see, Section III). Furthermore, instead
of a single node local repairability, multiple failures can also
be considered. Such multiple failures and the corresponding
cooperative local recovery model in distributed storage was
recently introduced in [15]. In Section III we generalize this
model as well on graphs.

A. Recoverable distributed storage systems
Suppose, the graph G(V, E) represents the network of stor-

age. For any v ∈ V , define N(v) = {u ∈ V : (v, u) ∈ E}
to be the neighborhood of v. Each element of V represents a
server, and in the case of a server failure (say, v ∈ V is the
failed server) one must be able to reconstruct its content from
its neighborhood N(v).

Given this constraint what is the maximum amount of infor-
mation one can store in the system? Without loss of generality,
assume V = {1, 2, . . . , n} and the variables X1, X2, . . . , Xn

respectively denote the content of the vertices, where, Xi ∈
Fq, i = 1, . . . , n.

Definition 1: A recoverable distributed storage system
(RDSS) code C ⊆ Fn

q with storage recovery graph
G(V, E), V = {1, 2, . . . , n}, is a set of vectors in Fn

q to-
gether with a set of deterministic recovery functions, fi :

F|N(i)|
q → Fq for i = 1, . . . , n such that for any codeword

(X1, X2, . . . , Xn) ∈ Fn
q ,

Xi = fi({Xj : j ∈ N(i)}), i = 1, . . . , n. (2)



The decoding functions depend on G. The log-size of the code,
logq |C|, is called the dimension of C, or dim(C). Given a
graph G the maximum possible dimension of an RDSS code
is denoted by CAPq(G).
Note that, in this paper, CAPq(G) is expressed in q-ary units.
To convert it to bits we need to multiply with log2 q.

As an example, if G is a complete graph then CAPq(G) =
n− 1. This is possible because in n− 1 vertices we can store
arbitrary values, and in the last vertex we can store the sum
(modulo q) of the stored values.

Literatures of distributed storage often considers vector
codes and vector linear codes. In our case, in a vector code,
instead of a symbol, a vector is stored in each of the vertices.
In the context of general nonlinear codes, vector codes do not
bring any further technical novelty and can just be thought of
as codes over a larger alphabet. The capacity of storage can
only increase when we consider codes over larger alphabet.

Using the results of [1], it can be deduced that the storage
capacity of any graph is related closely to the length of
index coding [4] for that graph. In particular, the storage
capacity is only an additive logarithmic term away from the
complementary index coding rate of [7].

II. ALGORITHMIC RESULTS AND CONSTRUCTIONS OF
RDSS CODES

A. Undirected graph

In this section, we show that for an undirected graph G,
an RDSS code can be constructed in polynomial time that
achieves a rate within half of what is optimal for G. In
particular, if G is bipartite, then the optimal code achieving a
rate equal to CAPq(G) can be constructed. Hence, for undi-
rected graph it is relatively easy to compute or approximate
CAPq(G).

To achieve the above goal, start with the following lemma
first. Recall that, a vertex cover of a graph G(V, E) is a subset
U ⊆ V such that ∀(u, v) ∈ E either u ∈ U or v ∈ U or both.

Lemma 1: For any undirected graph G(V, E), and any q ≥
2,

CAPq(G) ≤ VC(G), (3)

where VC(G) is the size of the minimum vertex cover of G.
Proof: Suppose, A ⊂ V is an independent set in G. Any

vertex v ∈ A has N(v) ⊆ V \A. Hence, CAPq(G) ≤ n− |A|.
Notice, V \ A is a vertex cover of G. When A is the largest
independent set, we have, CAPq(G) ≤ VC(G).

1) Construction of code: A matching in a graph G(V, E) is
a set of edges such that no two edges share a common vertex.
The size of the largest possible matching of the graph G is
denoted by M(G) below. Polynomial time algorithms to find
the maximum matching is well-known [9].

To store information in the graph, first we find a maximum
matching F ⊂ E. Then for any (u, v) ∈ F, u, v ∈ V , we store
the same variable in both u and v. In this way we will be
able to store M(G) amount of information. Whenever one
vertex fails we can go to only one other vertex to retrieve the
information. Hence, M(G) ≤ CAPq(G).

Surprisingly, this simple constructive scheme is optimum
for bipartite graphs, within a factor 2 of optimum storage for
arbitrary graphs and is very unlikely to get improved upon via
any other constructive scheme.

First of all, we need the following well-known lemma [20].
Lemma 2: For any graph G,

M(G) ≤ VC(G) ≤ 2M(G).

The proof is straight-forward. To cover all the edges one must
include at least one vertex from the edges of any matching.
On the other hand, if both the endpoints of the edges of a
maximal matching is deleted, no two other vertices can be
connected (from the maximality of the matching).

Now using Lemmas 1, 2, and the discussion above, we have,

M(G) ≤ CAPq(G) ≤ VC(G) ≤ 2M(G).

Hence, we can store via a constructive procedure M(G) ≥
1
2
CAPq(G) amount of information for any arbitrary graph G.
It is unlikely that anything strictly better than the matching-

code above can be found for an arbitrary graph G in
polynomial-time, because that would imply a better-than-2-
approximation for the minimum vertex cover. Khot and Regev
[12] have shown that if the unique game conjecture is true then
such algorithm is not possible. Inapproximability of minimum
vertex cover under milder assumptions appear in the famous
paper of Dinur and Safra [8].

However for some particular classes of graphs we can do
much better. Specifically if the graph G is bipartite then
König’s theorem asserts M(G) = VC(G). Hence for a
bipartite graph G, CAPq(G) = M(G) and an RDSS code
can be designed in polynomial time.

Other special graphs, such as planar graphs [2], [3], that
have better approximation algorithms for minimum vertex
cover, might also allow us to approximate CAPq(G) better.
We left that exercise as future work.

B. Directed graphs

Next we attempt to extend the above techniques to construct
RDSS codes for directed graphs. The following proposition is
a simple result that proves to be an useful converse bound.

Proposition 3: For any graph G(V, E), and any q ≥ 2,

CAPq(G) ≤ FVS(G), (4)

where FVS(G) is the minimum number of vertices to be
removed to make G acyclic (also called the minimum feedback
vertex set.
Note that, results of [4] or [7] along with [13] imply that
CAPq(G) ≤ FVS(G) + O(logn). The above proposition is
stronger in the sense that we get rid of the log term.

Proof of Prop. 3: Suppose, U ⊂ V is such that the
subgraph induced by U is acyclic. We first claim that, the
dimension of any RDSS code in G must be at most |V \ U|.
Let us prove this claim. Suppose u ∈ U is such that all edges
in E that are outgoing from u has the other end in V \ U.
As the induced subgraph from U is acyclic, there will always
exist such vertex. Hence, whatever we store in u, must be a



function of what are stored in vertices of V \U. Now, consider
the subgraph induced by U \ {u}. As this subgraph is also
acyclic, there must exist a vertex whose content is a function
of the the contents of vertices of V \ U. Proceeding as this,
we deduce that, no more than |V \U| amount of information
can be stored in the graph G.

Now consider the maximum induced acyclic subgraph of G.
If the vertex set of such subgraph is U, then |V\U| = FVS(G).
Hence, CAPq(G) ≤ FVS(G).

It is not possible to construct a code by a matching, as in the
case of undirected graph. In the undirected graph we could do
that because, if (u, v) ∈ E, then just by replicating the symbol
of u in v we can guarantee recovery for both u and v. In
the case of directed graph, such recovery is possible, if we
have a directed cycle: u0 → u1 → · · ·→ u`−1 → u0, where
ui ∈ V and (ui, u(i+1) mod `) ∈ E for all 0 ≤ i < `. We can
just store one symbol in u1, and then replicate this symbol
over all vertices of the cycle. Whenever one node fails we can
go to the next node in the cycle to recover what we lost.

Two cycles in the graph G(V, E) will be called vertex-
disjoint they do not have a common vertex.

Suppose, P is a set of vertex-disjoint cycles of the graph G.
Then it is possible to store |P| symbols in the graph. Hence
CAPq(G) ≥ VD(G) where VD(G) is the maximum number
of vertex-disjoint cycles in the graph G.

At this point it would be helpful to establish a relation
between VD(G) and FVS(G). Such relation appear in the work
of Erdös and Pósa [10]. Namely, for any undirected graph, it
was shown that

FVS(G) ≤ VD(G) logVD(G).

There are two bottlenecks of using this result for our purpose.
First, this only holds for undirected graphs. Second, computing
the optimal vertex-disjoint cycle packing is a computationally
hard problem even for undirected graphs.

There are a number of efforts towards generalizing the Erdös
and Pósa theorem for directed graphs culminating in [16]
that shows that for directed graph there exists an increasing
function h : Z → Z such that,

FVS(G) ≤ h(VD(G)).

However, the function h implied in [16] can be super-
exponential. Hence, for our purpose it is not of much interest.

In what follows, we show that a fractional vertex-disjoint
cover also lead to an RDSS code. Albeit the code is vector-
linear as opposed to the scalar codes we have been considering
so far. We need the following fractional vertex-disjoint packing
result of Seymour [17]. Suppose, P is the set of all directed
cycles of G(V, E). Suppose, φ : P → Q assigns a rational
number to every directed cycle. Let V(C), C ∈ P denote the
vertices of the cycle C. We impose a condition that φ must
satisfy, ∑

C:v∈V(C)

φ(C) ≤ 1,

for all v ∈ G. Under this condition we maximize the value
of

∑
C∈Pφ(C) over all functions φ. Suppose this value is K.

Then [17] asserts,

FVS(G) ≤ 4K ln 4K ln log2 4K.

We will now show a construction of RDSS codes using
Seymour’s result.

Theorem 4: Suppose in each vertex of the directed graph
G(V, E) it is possible to store a vector of length p, i.e., from
Fp
q, for a large enough integer p. Then, for any q ≥ 2, it

is possible to store constructively pK q-ary symbols in the
graph, such that content of any vertex can be recovered from
its neighbors, and

4K ln 4K ln log2 4K ≥ CAPq(G).

Proof: Suppose, P is the set of all directed cycles of
G(V, E), and φ : P → Q is a function such that

1)
∑

C:v∈V(C)φ(C) ≤ 1, for all v ∈ G.
2) CAPq(G) ≤ 4K ln 4K ln log2 4K, where K =∑

C∈Pφ(C).
We know such function φ exists from [17] and Prop. 3.
Without loss of generality, we can assume φ(C) = n(C)

p
for

all C ∈ P, n : P → Z+ ∪ {0}, and p is a positive integer.
Suppose we want to store a vector x ∈ FpK

q . In each vertex
we store a vector of length at most p, i.e., content of each
vertex belong to Fp

q. These vectors are decided in the following
way. We partition the coordinates of x, that is [1, 2, . . . , pK], in
to |P| parts. Each cycle C ∈ P is assigned n(C) coordinates to
it. We can do such partition, because

∑
C∈P n(C) = pK. For

any C ∈ P, the n(C) coordinates assigned to C are stored in
v for all v ∈ V(C). Hence the length of the vector need to be
stored in v ∈ V is

∑
C:v∈V(C) n(C) ≤ p which is consistent

with our assumption.
Now if the content of any vertex v is need to be restored, we

can use the contents of the neighboring vertices. If v ∈ V(C),
then the n(C) symbols stored in v can be restored from the
copy stored in the vertex u where (v, u) is an edge in C. This
holds true for all C ∈ P such that v ∈ V(C).

The function φ can be found by solving a linear program:
maximize

∑
C∈Pφ(C), subject to

∑
C:v∈V(C)φ(C) ≤ 1, for

all v ∈ G. The number of variables in the linear program
is equal to the number of cycles in the graph G. The dual
problem is given by means of finding a function ψ : V → Q
that minimizes

∑
v∈V ψ(v) such that

∑
v∈V(C)ψ(v) ≥ 1 for

every directed cycle C. Although the number of constraints
in this dual linear program can be exponentially large, there
exists a separation oracle that can differentiate between a
feasible solution and an infeasible one. For example, given any
ψ : V → Q, one can just calculate the shortest weight cycle,
minC∈P

∑
v∈V(C) v, in polynomial time and check whether

that is greater than 1 or not. If such separation oracle exists,
then the dual linear program can be solved in polynomial time
[20, p. 102]– and at the same time a primal optimal solution
can also be found (by using say, ellipsoid method).

Hence, it is possible to explicitly construct the above-
mentioned vector RDSS code.



Remark 1: The above construction is comparable to that
of [7], where the complementary index coding problem is stud-
ied. The analysis of [7] is more complicated – it converts the
vertex disjoint packing in to a edge-disjoint packing problem
and then converts it back – and uses crucially a result of [14]
that does not hold for all graphs. Moreover, if we blindly use
the result of [7], in terms of approximation guarantee there
will be an extra additive error term of O(logn), due to the
gap between complementary index coding rate and CAPq(G).
By a direct analysis, we have avoided this term above.

Subsequently, we consider multiple node failures in our
storage model.

III. MULTIPLE FAILURES

In this section, we describe two possible generalizations of
the quantity CAPq(G) that are consistent with the distributed
storage literature and take care of the situation when more
than one server-nodes simultaneously fail.

A. Collaborative Local Repair on Graphs

The notion of cooperative local repair was introduced as
a generalization of the definition of local recovery in [15].
In this definition, instead of one server failure, provisions for
multiple server failures are kept. Next we extend this notion
to distributed storage on graphs.

Given a graph G(V = {1, . . . , n}, E), we use each vertex to
store a q-ary symbol. A code C ⊆ Fn

q is called cooperative t-
RDSS code if for any set of connected vertices U ⊂ V, |U| ≤ t,
there exist deterministic functions fUi , i ∈ U such that for any
codeword (X1, . . . , Xn) ∈ C, Xi = fUi ({Xj : j ∈ ∪l∈UN(l) \
U}) for all i ∈ U. This means that if any set of t or less
connected vertices fail, then one should be able to recover
them from the neighbors of that set.

Note that, it is necessary in the definition to consider all sets
of size less than t as well, because the local recovery of any
set U, |U| = t does not imply that all proper subsets of U are
locally recoverable (i.e., not all neighbors of U are neighbors
of a given vertex in U).

The reason it is sufficient to consider connected sets for the
definition is that two disconnected sets of vertices of total size
t are locally recoverable as any set less than size t is.

We below consider as example only the special case of t = 2
for undirected graphs. In this case, apart from being a usual
RDSS code, the code must also be able to deal with the case
when both vertices of an edge fail. Hence the construction
based on matching of Sec. II-A will not work. Instead, for our
first result, we will need the following definition.

A k-path in a graph is a set of vertices v1, v2, . . . , vk such
that (vi, vi+1) is an edge in the graph for all 1 ≤ i ≤ k−1. A
subset S of vertices, such that for any k-path {v1, v2, . . . , vk}
of the graph at least one of vis must belong to S, is called a
k-path vertex cover [5].

Proposition 5: Suppose, given an undirected graph
G(V, E), |V | = n, S ⊂ V is the smallest 3-path vertex cover.
Then the dimension of any cooperative 2-RDSS code is at
most |S|.

Proof: Assume, W ⊂ V is such that every vertex in the
the induced subgraph of W has degree 1 or 0. Such sets are
called dissociation set and the size of smallest dissociation
set is called the dissociation number [22]. From the definition
of cooperative 2-RDSS codes, content of any vertex of W
can be reconstructed from vertices outside of W. Then the
dimension of any cooperative 2-RDSS code is at most n−|W|.
On the other hand, V \W is such that for any u, v,w ∈ V:
(u, v), (v,w) ∈ E, at least one of u, v or w is in V \W.

In other words, the dimension of any cooperative 2-RDSS
code is at most n minus the dissociation number. It is possible
to find all vertex-disjoint 3-paths in a graph G in polynomial
time [21]. Note that the smallest 3-path vertex cover must
contain at least one vertex from any 3-path. This allows us
to construct a cooperative 2-RDSS code that has dimension
at least one-third of what is optimal possible. Indeed, we just
repeat the same variable in all three vertices of a 3-path.

To generalize the above procedure beyond 2 erasures be-
comes cumbersome and also leads to substantial loss in the
dimension of RDSS codes. Instead next we consider the usual
scenario where a provision of recovery from catastrophic
failures is included via minimum distance of the code.

B. Considerations for Minimum distance

Inclusion of the minimum distance as a necessary parameter
in a locally repairable code is the norm in distributed storage
[11]. In this subsection, on the RDSS codes, we further impose
the constraint of minimum distance between the codewords.
Given a graph G(V, E) an RDSS code with distance d is an
RDSS code C ⊆ F|V |

q such that for any x,y ∈ C, the Hamming
distance between them, dH(x,y) ≥ d.

By abusing notations slightly, for any graph G(V, E) and
any U ⊂ V , define N(U) to be the set of all vertices in V \U
that has at least one (incoming) edge from U. We have the
following proposition.

Theorem 6: For any graph G(V, E), suppose there exists an
RDSS code with distance d and dimension k. Then,

d ≤ |V |− k+ 1− max
U∈I(G):|N(U)|≤k−1

|U|, (5)

where for an undirected graph I(G) is the set of all inde-
pendent sets of G and for directed graphs I(G) is the set of
vertex-sets of all induced acyclic subgraphs of G.
When no local recovery property is required, the graph G
can be though of a complete graph. In that case the above
bound reduced to the well-known Singleton bound of coding
theory. When no distance property is required (i.e., d = 1),
the bound reduces to Equations (3) or (4). Finally, when the
graph is regular with degree r, the bound becomes (1), as an
independent set (or acyclic induced subgraph) of size

⌈
k
r

⌉
+1

is guaranteed to exist via Turán’s theorem.
Proof of Thm. 6: The proof follows a generalization

of the proof of Eq. 1 from [6], [19]. Below we provide the
proof for undirected graphs which extends straight-forwardly
to directed graphs.



Let C ∈ Fn
q , n = |V | be an RDSS code with distance d and

dimension k for the graph G. For ant I ⊆ V , let CI denote the
restriction of codewords of C to the vertices of I.

Suppose, U ⊂ V is the largest independent set such that
N(U) ≤ k− 1. Let R be the k− 1 sized subset that is formed
by the union of N(U) and any arbitrary k−1−N(U) vertices.
Hence,

|CU∪R| ≤ qk−1,

which imply d must be at most n− |U∪R|. On the other hand
|U ∪ R| = |U|+ k− 1. This proves the theorem.

Acknowledgement: This work is supported in part by a grant
from University of Minnesota.

REFERENCES

[1] N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hassidim. Broad-
casting with side information. In Foundations of Computer Science,
2008 (FOCS’08), 49th Annual Symposium on, pages 823–832. IEEE,
2008.

[2] B. S. Baker. Approximation algorithms for np-complete problems on
planar graphs. Journal of the ACM (JACM), 41(1):153–180, 1994.

[3] R. Bar-Yehuda and S. Even. On approximating a vertex cover for planar
graphs. In Proceedings of the fourteenth annual ACM symposium on
Theory of computing, pages 303–309. ACM, 1982.

[4] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol. Index coding with side
information. In Foundations of Computer Science, 2006 (FOCS’06),
47th Annual Symposium on, pages 197–206. IEEE, 2006.

[5] B. Brešar, F. Kardoš, J. Katrenič, and G. Semanišin. Minimum k-path
vertex cover. Discrete Applied Mathematics, 159(12):1189–1195, 2011.

[6] V. Cadambe and A. Mazumdar. An upper bound on the size of locally
recoverable codes. In Proc. IEEE Int. Symp. Network Coding, June
2013.

[7] M. A. R. Chaudhry, Z. Asad, A. Sprintson, and M. Langberg. On
the complementary index coding problem. In Information Theory
Proceedings (ISIT), 2011 IEEE International Symposium on, pages 244–
248. IEEE, 2011.

[8] I. Dinur and S. Safra. On the hardness of approximating minimum
vertex cover. Annals of Mathematics, pages 439–485, 2005.

[9] J. Edmonds. Paths, trees, and flowers. In Classic Papers in Combina-
torics, pages 361–379. Springer, 1987.

[10] P. Erdős and L. Pósa. On independent circuits contained in a graph.
Canad. J. Math, 17:347–352, 1965.

[11] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality
of codeword symbols. IEEE Trans. Inform. Theory, 58(11):6925–6934,
Nov. 2012.

[12] S. Khot and O. Regev. Vertex cover might be hard to approximate to
within 2- ε. Journal of Computer and System Sciences, 74(3):335–349,
2008.

[13] A. Mazumdar. On a duality between recoverable distributed storage
and index coding. In Information Theory, International Symposium on,
pages 1977–1981. IEEE, 2014.

[14] Z. Nutov and R. Yuster. Packing directed cycles efficiently. In
Mathematical Foundations of Computer Science 2004, pages 310–321.
Springer, 2004.

[15] A. S. Rawat, A. Mazumdar, and S. Vishwanath. On cooperative local
repair in distributed storage. In Information Sciences and Systems
(CISS), 2014 48th Annual Conference on, pages 1–5. IEEE, 2014.

[16] B. Reed, N. Robertson, P. Seymour, and R. Thomas. Packing directed
circuits. Combinatorica, 16(4):535–554, 1996.

[17] P. D. Seymour. Packing directed circuits fractionally. Combinatorica,
15(2):281–288, 1995.

[18] K. Shanmugam and A. G. Dimakis. Bounding multiple unicasts through
index coding and locally repairable codes. In Information Theory
Proceedings (ISIT), 2014 IEEE International Symposium on, pages 296–
300. IEEE, 2014.

[19] I. Tamo and A. Barg. A family of optimal locally recoverable codes.
arXiv preprint arXiv:1311.3284, 2013.

[20] V. V. Vazirani. Approximation algorithms. springer, 2001.

[21] R. Williams. Finding paths of length k in O∗(k2) time. Information
Processing Letters, 109(6):315–318, 2009.

[22] M. Yannakakis. Node-deletion problems on bipartite graphs. SIAM
Journal on Computing, 10(2):310–327, 1981.


